

UPPSALA UNIVERSITE

Predictor Antennas in Action

The road to reliable vehicular communication

Authors: Joachim Björsell, Mikael Sternad, Michael Grieger Slide 1, 12

Slide 1, 12 October 2017

UPPSALA UNIVERSITET

Connected Vehicles

- 5G focus
- The future of traveling
- Technical challenges
 - Channel State Information at Transmitter (CSIT)
 - For fast link adaptation/scheduling
 - For (massive) MIMO downlink beamforming
 - Becomes outdated for vehicular velocities
 - (2 ms 10 ms delays at 2 6 GHz ⇔ 0.5 λ 3 λ)

Challenging to predict based on time series

Predictor Antenna

15 cm 15 cm

UPPSALA UNIVERSITET

Slide 3, 12 October 2017

- Encounter same position twice
- Predicts the channel at the second time
- Horizon limited by antenna distance
- $h_{main}(pos) = ah_{pred}(pos)$, a coefficient

Predictor Antenna

15 cm

UPPSALA UNIVERSITET

Slide 3, 12 October 2017

- Encounter same position twice
- Predicts the channel at the second time
- Horizon limited by antenna distance
- $h_{main}(pos) = ah_{pred}(pos)$, a coefficient

UPPSALA UNIVERSITET

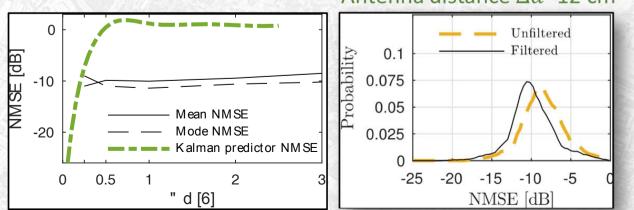
Early Results

Measurement setup

- Horizontal metal sheet "roof"
- Monopole antennas
- Two selected locations, 50km/h

Results

- Average NMSE of -14 dB [2]
- Long prediction horizon attained (3 λ ahead)


Slide 4, 12 October 2017

Current measurements

Theoretical prediction performance

NMSE = $1 - |b|^2 \frac{\gamma_p}{(1 + \gamma_p)}$

- **b** cross-correlation
- γ_p predictor antenna SNR
- Realistic average NMSE of -10 dB [6]
- Superior prediction horizon

UPPSALA UNIVERSITET

- New measurements:
 - Central Dresden, Germany
 - Similar setup as earlier

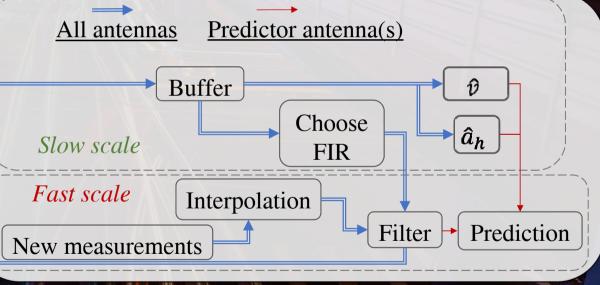
Dresden measurements				
Base station sites	5			
Velocity	3-50 km/h			
SNR	5-30 dB			
Burst length	640 ms			
Number of bursts	1 445			
Measure OFDM symbols	650 million			
Carrier frequency	2.53 GHz			

Slide 5, 12 October 2017

MHOTEL 香椒答里 HOTEL MARA

愛

Algorithm



爾麗

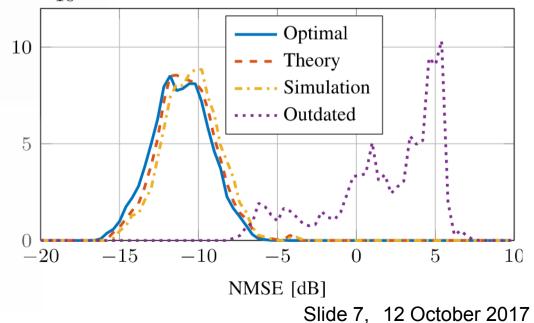
Designed with implementation in mind

- Slow scale
 - Estimates parameters
 - Runs about every 0.3 s
- Fast scale:
 - Interpolation
 - Filter measurements
 - Predict channel
 - Runs every time-symbol slot

Slide 6, 12 October 2017

UPPSALA UNIVERSITET

Results


Prediction evaluation

- Challenge: True channels unavailable
- Evaluated on subset with SNR > 30 dB 10^{-2}

Distribution

- 220 measurement bursts
- Algorithm vs theory
- Prediction vs outdating
- Interpretation
 - Simulation is close to theory
 - Outdated channels would be useless
 - Antenna distance limits the prediction horizon

Prediction horizon of 8 ms

Conclusions

- Enabling CSIT for for moving vehicles
 - Current method achieves prediction NMSE of around -10 dB
 - Adequate for downlink beamforming
- Impact on 5G vehicular downlinks
 - Cost efficiency
 - Capacity
 - Link reliability

	1	UI	NIVERSIT
●000 Tele2 LT 4G 🔒	7 83 % 💼)		
09:56 rugpjūčio 14 d., pirmad			
HOW BAI DO YOU WANT, IT	3		
Press Home to unlock			
	Slide 8.	12 Octo	ber 2017

UPPSALA UNIVERSITET

Thank you!

References

- 1. M. Sternad et al., "Using "Predictor Antennas" for Long-range Prediction of Fast Fading Moving Relays," *IEEE Wireless Communications and Networking Conference (WCNC)*, Paris, France, April 2012.
- 2. N. Jamaly et al., "Analysis and Measurement of Multiple Antenna Systems for Fading Channel Prediction in Moving Relays," *European Conference on Antennas and Propagation, (EuCAP 2014)*, April 6-11 2014, Hauge, The Netherlands.
- 3. D-T Phan-Huy et al., "Connected Vehicles that Use Channel Prediction Will Fully Take Advantage of 5G," 22nd ITS World Congress, Bordeaux, France, October 2015.
- 4. D-T Phan-Huy et al., "Making 5G Adaptive Antennas Work for Very Fast Moving Vehicles," *IEEE Intelligent Transportation Systems Magazine*, Summer, 2015, pp. 71-84.
- 5. D-T Phan-Huy et al., "5G on Board: How Many Antennas Do We Need on Connected Cars?," *IEEE Globecom 2016* Workshop on 5G RAN Design, Washington DC, December 2016.
- 6. J. Björsell et al., "Using Predictor Antennas for the Prediction of Small-scale Fading Provides an Order-of-Magnitude Improvement of Prediction Horizons," *IEEE International Conference on Communications, ICC, Workshop WDN-5G ICC2017*, Paris, France, May 2017.