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Abstract

The issue of channel state information at the trans-
mitter is investigated using MIMO channel measure-
ments and by deriving expressions for ergodic and
outage capacity in a Rayleigh fading channel. Ex-
pressions for bit error rates in Rayleigh fading chan-
nels are also presented for orthogonal space time
block codes and for beamforming where the bit er-
ror rates in the beamforming case follow from the
distribution of the largest eigenvalue to Wishart
matrices. We demonstrate by measurements that
Rayleigh fading is a valid assumption in non line of
sight channels, although a Nakagami-m distribution
showed to be a more appropriate distribution model
in both line of sight and NLOS environments. It was
also demonstrated that channel state information at
the transmitter is less useful in high-SNR scenarios
but is more useful in line of sight channels compared
to non line of sight environments.

1 Introduction

This paper deals with multiple input multiple out-
put (MIMO) wireless systems in flat fading chan-
nels. The aim is to answer the question: How large
is the performance gain by providing the transmit-
ter with channel state information (CSI) ?. CSI
can be made available to the transmitter by using
a feedback channel1 which will consume bandwidth
and is thereby undesirable if the net gain is small.
When some or full CSI is available at the transmit-
ter, beamforming maximizes the receiver SNR [1].
When CSI is unavailable at the transmitter, space
time codes [2] can be used to achieve transmit diver-
sity gain over the wireless link. In this paper we com-
pare the beamforming approach to the space time
block codes using both a theoretical channel model
and measured channels. In the theoretical model, we
assume a flat Rayleigh fading channel and we use the
measurements to validate this assumption.
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1The delay between acquiring the CSI to this information
is used must of course be shorter than the coherence time of
the channel.

2 Data and channel model

Assume a wireless link using a transmitter with
nt > 1 antennas and a receiver with nr antennas.
The nr × nt flat fading channel gain is described by
the matrix H. The i, jth element of H is thus the
complex gain factor between receive antenna i and
transmit antenna j. Furthermore, the communica-
tion is carried out using bursts or packets of length
T symbols, and we assume that the channel is quasi-
static, i.e. the elements of H are assumed to be fixed
during the transmission of these T symbols. The in-
put output relation can be written as

Y = HC + V (1)

where the received signal Y is nr × T , the encoded
codeword C is nt × T and the receiver noise V is
nr × T and the elements of V are independent and
identically distributed (i.i.d.) zero mean circular
complex Gaussian random variables with variance
σ2. Furthermore, we have a constraint on the maxi-
mum transmitted power on nt antennas, PT . Define
P = PT

ntσ2 .

The mutual information between the receiver and
the transmitter for the channel model (1) is [3]

I(H,Rcc) = log2 det
[
In +

1
σ2

HRccH∗
]

(2)

measured in bits per second per Hz of bandwidth.
Rcc is the covariance matrix of the transmit sig-
nal with the power constraint Trace(Rcc) = PT and
∗ denotes complex conjugate transpose. If CSI is
unavailable at the transmitter, capacity is achieved
by choosing the transmit data streams as circularly
symmetric zero mean complex Gaussian variables
with covariance matrix Rcc = PT /ntI [3]. If the
channel is random, we define the ergodic capacity as
C = E {I}.

2.1 Space time block codes

Space time block codes (STBC) is a technique to
map K input data symbols to the elements of the
matrix C. In [4], it was shown that the STBC de-
couples the MIMO channel into an equivalent SISO
channel, as seen by each transmitted symbol, so the
output can be written as (before ML detection)

zo = ‖H‖2F
√

PT /nts + v (3)



where s is the transmitted symbol normalized to unit
magnitude and v is the noise whose variance can be
shown to be ‖H‖2F σ2. The effective SNR at the
receiver can thus be shown to be[4]

γSTBC = P ‖H‖2F = PγH . (4)

The outage capacity R0 at probability Pout is given
by solving for R0 in

Pout =Pr {I < R0} = (5)

=Pr
{

K

T
log2 (1 + PγH) < R0

}
= (6)

=
∫ P−1(2R0T/K−1)

0

pH(γ)dγ (7)

where pH(γ) is the probability density function of
γH . Since the squared Frobenius norm of H is a
sum of 2nrnt independent χ2-distributed variables
(under the iid Rayleigh fading assumption) , pH(γ)
is also a χ2-distribution [5]

pH(γ) =
1

Γ(nrnt)
γnrnt−1e−γ (8)

in the Rayleigh fading case and non-central χ2- dis-
tributed in the Ricean fading case. The expectation
value of γH is E(γH) = nrnt. Using (8) in (7) we
get

Pout = Γ
(
nrnt, P

−1
(
2R0T/K − 1

))
(9)

where Γ(a, x) =
∫ x

0
ta−1e−tdt/(t − 1)! is the incom-

plete Gamma function.

The ergodic channel capacity is the expectation
value of the mutual information (2) and in the STBC
case, since the log-function is concave, an upper
bound can be found by using Jensen´s inequality

CSTBC = E {I} = E

{
K

T
log2 (1 + PγH)

}
(10)

≤ K

T
log2 (1 + PE {γH}) =

K

T
log2

(
1 +

PT

σ2
nr

)

(11)

bps/Hz. Hence, the ergodic capacity upper bound
increases logarithmically with the number of receive
antennas in the STBC case.

The bit error rate for STBC can be calculated for co-
herently detected BPSK by performing the following
expectation integral

PBPSK,STBC = (12)

=
∫ ∞

0

Q(
√

2Pγ)pH(γ)dγ = (13)

=
1
2
−

√
P

π

Γ(nrnt + 1/2)
Γ(nrnt)

F

(
1
2
,
1
2

+ nrnt;
3
2
;−P

)

(14)

where F () is the hypergeometric function [6] and Γ()
is the Gamma function. A closed form expression
exists for this particular hypergeometric function [6].

2.2 Beamforming

If CSI is available at the transmitter, we use beam-
forming as it maximizes the receive SNR [1]. The
input, output relation is

zc = w∗
RHwT s + w∗

Rv (15)

where wR,wT are the receive and transmit weight
vectors respectively. The received SNR can be opti-
mized by choosing wR,wT as the principal left and
right singular vectors to the matrix H respectively
under the constraint |wT |2 = PT . The correspond-
ing receive SNR is

γBF = λmax
PT

σ2
= λmaxPnt (16)

where λmax is the largest eigenvalue to the com-
plex Wishart matrix W = HH∗. To proceed as
in the previous section for the STBC case, we need
the probability density function of λmax.

2.2.1 Eigenvalues of W

Results from random matrix theory gives us the
probability density function (pdf) of the eigenval-
ues of W. The pdf of the largest eigenvalue to
the matrix W can now be derived. Start with the
m = min {nr, nt} unordered eigenvalues to the ma-
trix W [7]

p(λ1, . . . , λm) =

= Km,n

m∏

i=1

λn−m
i e−λi

∏

1≤i<j≤m

(λi − λj)
2 (17)

where the constant Kn,m is a normalization constant
that depends on n = max(nr, nt) and m.

The pdf for the largest eigenvalue is obtained by first
finding the cumulative distribution function as

Pr {λmax < t} =

=
∫ t

0

· · ·
∫ t

0

p(λ1, . . . , λm)dλ1 · · · dλm (18)

and then the pdf for λmax as

pλ(λmax) =
d

dt
Pr {λmax < t}

∣∣∣∣
t=λmax

. (19)

By inserting (17) and (18) into (19), it is straight-
forward to show that this pdf can be written as

pλ(λmax) =
m∑

k=1

φk (λmax) e−kλmax (20)



where φk(x) is a polynomial. The polynomials for
m,n = 2, 3 are given in Appendix A.

The pdf of λmax for the general nr, nt case is dif-
ficult to calculate but in the limit of nr, nt → ∞
where nr/nt → κ ≥ 1 the expectation value of λmax

converges to
(√

nr +
√

nt

)2 [8].

The outage capacity can be found by carrying out a
similar integration as in the STBC case (7), and the
result will depend on the dimensions of the system
through nr, nt. By using Jensen´s inequality and
the asymptotic value for the expectation of λmax we
get an upper bound on the ergodic channel capacity

CBF = E {I} = (21)

≤ log2

(
1 +

PT

σ2
E {λmax}

)
(22)

−−−→asym log2

(
1 +

PT

σ2
(
√

nr +
√

nt)
2

)
(23)

bps/Hz.

We now derive the BER for the beamforming sys-
tem assuming coherent BPSK. The average prob-
ability of bit error is then given by evaluating
E

{
Q(
√

2Pntλmax)
}

.

PBF =
∫ ∞

0

Q
(√

2Pntλmax

)
pλ(λmax)dλmax

(24)
and by integration we get the expression

PBF =
1
2

(
1−

m∑

k=1

√
PT /σ2

PT /σ2 + k
ϕ

(m,n)
k (PT /σ2)

)

(25)
where ϕ

(m,n)
k (x) is a rational polynomial of degree m,

shown in Appendix B for n, m = 1, 2, 3. Note that
in the nt = nr = 1 single input single output case
we get the classical expression for BER of coherent
BPSK in a Rayleigh fading channel

Pe =
1
2

(
1−

√
PT /σ2

PT /σ2 + 1

)
. (26)

It is straightforward to show that in the high SNR
limit PT /σ2 À 1 we can approximate the BER in
(25) with the expression

PBF ≈ KC

(PT /σ2)nm
(27)

where KC is a constant. Hence, a diversity order of
nm is achieved.

3 Optimal transmission

It is interesting to compare the capacities for the
STBC and beamforming cases to what is optimally

achievable in the two cases of CSI available and
not available at the transmitter. In this section we
briefly review the mutual information in the optimal
case and also find an expression for when beamform-
ing capacity equals waterfilling capacity.

3.1 CSI at the transmitter

The mutual information as a function of the ordered
eigenvalues λ1 > λ2 > · · ·λm can be written as

Iwf =
m∑

i=1

log2

(
1 +

pi

σ2
λi

)
(28)

bps/Hz, where pi is the power transmitted in the
channel “mode” i with power gain λi. This is the up-
per bound by Shannon that gives the realizable infor-
mation rate through parallel channels with additive
white Gaussian noise. The maximum mutual infor-
mation under the power constraint PT =

∑m
i=1 pi

is achieved by “water-filling” over the m channel
modes [9] and the allocated power for mode i is

pi =
(

ν − 1
λi

)+

(29)

where (x)+ = max(0, x).

When the ”water level” µ is smaller than the in-
verse of the second largest eigenvalue, (µ < λ−1

2 ),
beamforming (which utilizes only the principal mode
corresponding to λmax) becomes equal to the water-
filling solution. Since µ also depends on λ1 = λmax,
this occurs if

1
λ2
− 1

λ1
<

PT

σ2
(30)

which gives

Iwf = IBF = log2

(
1 +

PT

σ2
λ1

)
. (31)

Hence, only the first mode is “filled with water” or
mathematically, pi = 0 for i = 2, . . . , m.

The probability of this to occur is

Pr

(
1
λ2
− 1

λ1
<

PT

σ2

)
=

=
∫ ∞

0

∫ λ1
Ptλ1/σ2+1

0

po(λ1, λ2)dλ2dλ1 (32)

where po(λ1, λ2) is the marginal pdf of the two
largest eigenvalues which we find by integrating out
the m − 2 smaller eigenvalues in (17). The result
can be seen in Figure 1 for different dimensions of
the MIMO system in a Rayleigh fading channel.
Note that only the smallest 2× 2 system has a non-
negligible probability to achieve the waterfilling ca-
pacity for practical SNR:s.
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Figure 1: The probability that beamforming
achieves waterfilling capacity in a Rayleigh fading
channel.

3.2 No CSI at transmitter

Without CSI at the transmitter the mutual informa-
tion is given by (28) with all pi = PT /nt, hence an
equal amount of power is transmitted in each chan-
nel ”mode”. The outage and ergodic capacity can
now be calculated by using the pdf of the eigenval-
ues (17). An expression for the ergodic capacity was
derived in [10] where also an upper and lower bound
was presented.

4 Comparisons with measurements

In this section we compare the above the theoretical
results presented above with MIMO channel mea-
surements. An important issue is the validity of the
Rayleigh fading channel assumption.

4.1 The Measurement Setup

The measurements were performed in an indoor of-
fice environment using a 4× 4 MIMO system at the
frequency 1.8 GHz. A Vector Network Analyzer was
used to measure the channel coefficients for the 16
channels using a switching method. All 16 channels
were measured in less than 3 seconds. Between each
measurement, the array was moved one eight of a
wavelength in the broadside direction. The antenna
elements were microstrip patch antennas placed in a
linear array with an interelement spacing of half a
wavelength. The patch antennas had a half power
beamwidth of 80◦ and a half power bandwidth of
170 MHz . Two scenarios were investigated, one line
of sight (LOS) and one non-LOS (NLOS) setup. In
the LOS scenario, the two arrays were placed facing
each other in a 8×6 meter laboratory room contain-
ing various instruments, tables and cabinets and 146
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Figure 2: Power spectrum for NLOS channel. Re-
ceived power in four half-a-wavelength spaced anten-
nas from one transmit antenna.

measurements were conducted. In the NLOS sce-
nario, 256 measurements was conducted and the re-
ceive array was placed outside the laboratory room,
centered in a long corridor with the array broadside
parallel with the corridor. The transmit array was
kept in the adjacent laboratory.

4.2 Validation

The initial measurements aimed to verify the flat
Rayleigh fading assumption. Figure 2 shows the
measured power spectrum in the NLOS case from
one transmit antenna to the four receive antennas.
The coherence bandwidth is estimated to Bc = 2.8
MHz so the flat fading assumption is valid if the sig-
nalling bandwidth is less than Bc. If a system with
higher bitrate is required, transmission over many
subchannels can be used, where the bandwidth of
each subchannel is less than Bc. Figure 3 shows
the estimated probability density functions of the
normalized amplitudes in the LOS and NLOS cases.
The curves are fitted to a Nakagami -m distribution
using a moment based method [11]. The Rayleigh
distribution is a special case of the Nakagami-m dis-
tribution when m = 1. Using the method in [11], we
estimate m = 0.85 in the NLOS case and m = 5.54
in the LOS case. Hence, the fading amplitude in the
NLOS case is approximately Rayleigh distributed
and the phase is uniformly distributed (not shown).

4.3 The benefits of feedback

All the plots in this section are derived from mea-
surements if not stated otherwise. To analyze the
performance gains from using feedback, the ergodic
channel capacity in the optimal cases are compared
in Figure 4. The benefits of CSI is decreased for in-
creasing transmit power (or reduced receiver noise).
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We also see that CSI gives a larger improvement
in the LOS case, because now there exists a strong
mode in the channel which is more efficiently ex-
ploited by the waterfilling algorithm. Figure 5 shows
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Figure 4: Relative ergodic capacity gain by using
CSI as a function of transmitted power. Waterfilling
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the corresponding comparison but for the beamform-
ing versus STBC case and the outage capacity is
plotted. For two antenna element arrays, the dif-
ference between LOS and NLOS channels is small.
Figure 6 shows the suboptimality of using beam-
forming when CSI is known at the receiver. Only
for nt = nr = 2 MIMO systems at low SNR, the
beamforming approach becomes equivalent to the
waterfilling approach. The probability for this to
occur is given by expression (32). It is instructive to
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coding with K=T .

compare the BER also, as it is a good measure on
how real systems behave with and without CSI. Fig-
ure 7 shows the BER estimated using the measured
channels along with the theoretical curves from (25)
and (14) for beamforming and STBC respectively.
Due to the short measured data series, the measured
curves cannot accurately estimate BER below 10−2.
This is the reasons for the deviation from the theo-
retical curves in Figure 7. For low SNR however, the
number of bit errors are so large that the theoretical
and measured curves coincide.

5 Conclusion

Performance of a MIMO systems using CSI and no
CSI at the transmitter has been compared. Mea-
surements at 1.8 GHz showed that the NLOS in-
door channel amplitude is closely approximated by
a Rayleigh fading distribution and in the LOS we
can use a Nakagami -m distribution. It was demon-
strated that the usefulness of CSI decreases when
SNR is increased but increases when the channel be-
comes LOS.

When CSI is available at the transmitter, beamform-
ing is always optimal if the number of receive anten-
nas is one (since we only have one channel eigen-
value). In a MIMO system, beamforming is subop-
timal except in the low SNR 2 × 2 case. A LOS
channel reduces the difference between waterfilling
and beamforming, since we then have a strong chan-
nel mode λ1 À λ2 > λ3 > · · · .
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A The polynomials φk(x)

m=2,n=2 : φ1(x) = 2− 2x + x2 and φ2(x) = −2

m=2,n=3 : φ1(x) = 3x− 2x2 + x3/2 and φ2(x) =
−3x− x2

m=3,n=3 : φ1(x) = 3 − 6x + 6x2 − 2x3 + x4/4,
φ2(x) = −6+6x−3x2−x3−x4/2 and φ3(x) = 3

B The rational polynomials ϕ
(m,n)
k (x)

m=1,n=1 ϕ
(1,1)
1 (x) = 1

m=1,n=2 ϕ
(1,2)
1 (x) = x+3/2

x+1

m=1,n=3 ϕ
(1,3)
1 (x) = x2+5x/2+15/8

(x+1)2

m=2,n=2 ϕ
(2,2)
1 (x) = 2x2+4x+11/4

(x+1)2 and

ϕ
(2,2)
2 (x) = −1

m=2,n=3 ϕ
(2,3)
1 (x) = 2x3+7x2+61x/8+57/16

(x+1)3 and

ϕ
(2,3)
2 (x) = −x2+5x+51/8

(x+2)2

m=3,n=3 ϕ
(3,3)
1 (x) =

3x4+12x3+81x2/4+117x/8+321/64
(x+1)4 and

ϕ
(3,3)
2 (x) = − 3x4+24x3+297x2/4+855x/8+3993/64

(x+2)4

and ϕ
(3,3)
3 (x) = 1


