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ABSTRACT
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ogy: A Search for Improved Methods in Clinical Routine and Research, 222 pp.
Uppsala. ISBN 91-506-1551-3.

Signal processing within the neurophysiological field is challenging and requires short
processing time and reliable results. In this thesis, three main problems are considered.

First, a modified line source model for simulation of muscle action potentials (APs) is
presented. It is formulated in continuous-time as a convolution of a muscle-fiber dependent
transmembrane current and an electrode dependent weighting (impedance) function. In the
discretization of the model, the Nyquist criterion is addressed. By applying anti-aliasing
filtering, it is possible to decrease the discretization frequency while retaining the accuracy.
Finite length muscle fibers are incorporated in the model through a simple transformation
of the weighting function. The presented model is suitable for modeling large motor units.

Second, the possibility of discerning the individual AP components of the concentric nee-
dle electromyogram (EMG) is explored. Simulated motor unit APs (MUAPs) are pre-
filtered using Wiener filtering. The mean fiber concentration (MFC) and jitter are esti-
mated from the prefiltered MUAPs. The results indicate that the assessment of the MFC
may well benefit from the presented approach and that the jitter may be estimated from the
concentric needle EMG with an accuracy comparable with traditional single fiber EMG.

Third, automatic, rather than manual, detection and discrimination of recorded C-fiber APs
is addressed. The algorithm, detects the APs reliably using a matched filter. Then, the de-
tected APs are discriminated using multiple hypothesis tracking combined with Kalman
filtering which identifies the APs originating from the same C-fiber. To improve the per-
formance, an amplitude estimate is incorporated into the tracking algorithm. Several years
of use show that the performance of the algorithm is excellent with minimal need for audit.
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Preface and acknowledgments

The answer is out there, Neo.
It’s looking for you and it will find you,

if you want it to.

Trinity, in The Matrix.

My main purpose when setting out on this journey six years ago was to develop
algorithms that may actually be used in practice. Consequently, the applications
presented herein are tailored to work reliably in a practical situation and, when
being in conflict, optimality has been traded for applicability.

From time to time, challenging obstacles have crossed my path and I have
often asked myself if this really was what I wanted. Obviously, I have been able
to surmount the barriers sufficiently often, and in retrospect, I may proudly notice
that things have worked out remarkably well.

Hopefully, this work may contribute in making this world a slightly better
place; not necessarily for mankind but maybe in the everyday life of the physi-
cian examinating his patient, the patient being diagnosed, the researcher analyzing
his experiments, or the engineer challenged with a signal processing problem.

Regarding the thesis, it is intended for readers ranging from an engineer with
a biomedical interest to a physician interested in engineering. To comply with
this intention, I have put an effort in providing background information both from
medicine and engineering.

To facilitate the applicability of the algorithms presented, I have as far as pos-
sible provided all details and reasonings necessary to re-implement and apply the
algorithms in reality. In the literature, this type of information is often omitted
which may cause a lot of frustration.

The thesis consists of two main portions of which the second part, the appli-
cations, makes up the main contribution of this work. The first part provides the
signal processing foundation on which the applications are built. Hence, the knowl-
edgeable reader, familiar with the signal processing concepts presented therein,
may benefit the most from using it as a reference.

The introduction of the thesis provides a comprehensive overview that is pri-
marily intended for persons non-familiar with neurophysiology. It provides the
basic knowledge needed to fully appreciate the rest.
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and Erik Torebjörk for their unconditional support and tutorship during these years.

There are also a number of people without whom I probably wouldn’t have
done this at all. I hereby gratefully acknowledge: Lars Antoni, who advised me
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CHAPTER 1

Introduction

UNDERSTANDING how nerve and muscle cells work is an ancient interest.
There are written records from 1700 B.C. that claims to be a transcription of

an even older document describing a thorough neurophysiological case study [18]
[31]. Modern neurophysiology, however, did not begin to formalize until Luigi
Galvani, around 1780-1790 A.D., caused the famous twitches of a frog leg during
a dissection. He discovered that the twiches were provoked by touching the nerve
of the leg with a metal knife.

Upon trying to explain Galvanis observation, Alessandro Volta had discovered
that a current (later known as a Galvanic current) is induced if two metal plates are
connected via an electrolytic medium.1 Based on this finding, Volta stated in 1792
that the twitches in the frog leg were provoked by an electrical current between
the steel knife and the tin plate upon which the leg was lying. Later experiments
proved Volta right.

This was the beginning of an important paradigm shift that established the base
of modern neurophysiology. Prior to Galvani’s discovery, Descartes and others
claimed that the nerves were hollow tubes carrying “vital spirits” but now it was
clear that the nerves were electrical conductors of some kind. Further experiments
showed that even the muscles had many similarities with the nerves in this respect.

Progressively, new discoveries adding to the knowledge of the functions of
muscles and nerves were being made. Due to technical difficulties, however, most
advances during the 19th century were on the anatomical level. The mystery of
whether the nerves were similar to metal wire conductors or whether the situation
was more complex remained.

1This discovery was later used by Volta to invent the first electric battery, the Voltaic pile.

1



2 Chapter 1. Introduction

Owing to instrumentation improvements, measurements that provided new in-
sights became possible to carry out and, as the end of the 19th century was ap-
proaching, the functional knowledge of nerves and muscles increased rapidly. To
mention a few achievements, Hermann von Helmholtz was in 1852 able to mea-
sure the conduction velocity of a nerve signal, realizing it was much too small to
be explained by simple conduction as in a metal wire.

Further indications along this line was obtained when Sidney Ringer around
1880 discovered that in order for an isolated frog heart to continue beating, salts
needed to be present in the surrounding solution. Specifically, sodium (Na), cal-
cium (Ca), and potassium (K) salts were needed and had to be in special concen-
trations relative to each other.

A clear hypothesis for the conduction of the nerve signal was not available
until Julius Bernstein in 1902 proposed that the inactive nerve or muscle fiber is
normally electrically polarized (negative inside) and that the action potential (AP),
as he called it, is a self perpetuating depolarization and repolarization of the cell
membrane. He also made the first real theoretical contribution in assuming a semi-
permeable cell membrane that could help explain the resting potential through dif-
ferences in potassium ion (K+) concentrations on the inside and outside of nerve
and muscle cells.

With the invention of the cathode ray oscilloscope in 1897, the measurements
were significantly improved, both in accuracy and in feasibility. In 1913, the Nobel
Prize winner, Edgar Douglas Adrian determined that the signal being transmitted
is pulse-code modulated, i.e., rather than being conducted as continuous signals,
the information is conducted as pulses in all-or-nothing responses with the pulse
repetition frequency proportional to the strength of the signal.

1.1 The constitution and function of nerves

One of the most annoying and irrefutable findings against the hollow-nerve theory
of Descartes was the repeated anatomical reports of nerves actually being anything
but hollow. Further anatomical studies revealed that the nerve trunks are actually
constituted by nerve fibers, or axons. These are responsible for conducting the AP
from the nerve cell body to its destination at the nerve terminal, see Figure 1.1. The
input to the cell is acquired through the so-called dendrites. With these and other
findings, a profound neurophysiological knowledge of the nerves was beginning to
formalize.

Still, the key principle behind the nerve conduction was unknown. To get fur-
ther knowledge of the electrochemical events taking place in the nerve cell during
the AP conduction, John Z. Young was in 1937 one of the first to make use of the
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Figure 1.1: A nerve cell with the most important parts indicated.

giant axon in squid. This axon has a diameter of about 0.8 mm which is approx-
imately 100 to 1000 times larger than other animal neurons; hence the attribute
“giant”.

The ease of working with large neurons made important experiments possible
for the first time. This included the first intracellular recordings of the nerve cell AP
as well as the first measurements of the underlying ionic currents which produce
them.

1.1.1 The electrical properties of the cell membrane

Around 1940, Alan L. Hodgkin together with Andrew F. Huxley and, indepen-
dently, Kenneth S. Cole along with H. J. Curtis made the first measurements of the
actual membrane voltage during an AP. The results were somewhat unexpected.
From Bernstein’s hypothesis, the membrane voltage was anticipated to increase
from its negative value about -65 mV to zero during the depolarization of the mem-
brane. Instead, the potential continued to increase and peaked near +50 mV.

It was suggested that this observation might arise from the membrane becom-
ing selectively permeable to sodium ions (Na+) and this was later confirmed by
Hodgkin and Katz in 1949.

To explain why the permeability of specific ions and the peak value of the
membrane voltage are important factors, we note that there are two forces which
act on the ions over the membrane, see Figure 1.2. First, if the concentration of
a certain ion is different on the two sides of the membrane, this concentration
gradient asserts a force on the ion towards the side with the lowest concentration
to level out the difference. Second, if the potential is different on the two sides of
the membrane, this voltage gradient asserts a force on a positive ion towards the
side with negative potential and vice versa for negative ions.
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(a) (b) (c)

Figure 1.2: The effect on particles of concentration and voltage gradients over
a cell membrane. In all diagrams, the compartment above the membrane has a
lower potential than the compartment below the membrane. (a) The concentra-
tion of neutral particles above the membrane is higher than below which causes
a downward net flow. (b) The concentration of the positively charged particles
are the same on both sides of the membrane and, hence, there is no concentra-
tion gradient. Due to the potential difference over the membrane, however, there
is an upward net flow of positively charged particles. (c) The concentration of
particles is higher above the membrane than below which tends to push particles
downwards. The positive charge of the particles in combination with the voltage
gradient, however, tends to push particles upwards. For certain potential and con-
centration differences, these two effects cancel each other which results in a zero
net flow.

At the equilibrium potential for a particular ion, the concentration and voltage
gradients just balance and there is no net flow of that ion across the membrane.
This potential is given by the Nernst equation that for a univalent ion at 20 ◦C is

V = 58 log10

Co

Ci
[mV]

where V is the equilibrium potential (internal minus external), and Co and Ci are
the outside and inside concentrations of the ion, respectively.

If we insert the concentrations found in the squid axon of the potassium (K+),
sodium (Na+), and chloride (Cl−) ions, we obtain the following equilibrium po-
tentials [67, p. 44]

VK = −75 mV

VNa = +55 mV

VCl ≈ −65 mV .

Knowing that the axon’s resting potential is about -65 mV, the following three
things can be noted. First, the chloride ions are in equilibrium and no net flow over
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Figure 1.3: The change of the membrane potential and the ion currents during
the conduction of an AP. (The current is defined to be positive if it flows out
of the cell.) At t = 0, the membrane is depolarized by a current impulse that
increases the membrane potential with +20 mV. (a) The depolarization causes
a quick increase of the membrane potential to about +50 mV. This is followed
by a slower reduction phase where the lowest point is actually below the initial,
resting potential (hyperpolarization). (b) The depolarization causes an increased
permeability to sodium ions (Na+) which is manifested by a pronounced influx
(negative current) of these ions because the concentration and voltage gradients
both asserts a push into the cell. Above a certain membrane potential, voltage-
gated potassium channels open which increases the permeability to potassium ions
(K+). This is manifested by an efflux (positive current) of these ions because the
concentration and voltage gradients both assert a push out of the cell.

the membrane occurs. Second, there will be an influx of sodium ions according
to its equilibrium potential being above the resting potential. Third, there will be
an efflux of potassium ions according to its equilibrium potential being below the
resting potential.

To balance these last two effects, the membrane contains ion pumps of which
the most important one in this context is the Na+/K+ pump. Each “stroke” forces
three sodium ions out of the cell and two potassium ions into the cell. Hence, the
ion concentrations and thereby the membrane potential are kept at constant levels.

1.1.2 The Hodgkin-Huxley action potential

With the knowledge about the role of sodium, but without knowing about the ion
channels which were discovered much later, Hodgkin and Huxley began a series
of experiments where they tested different conditions and measured the resulting
membrane potential.

After a tremendous amount of experimental work and manual calculations,
they were in 1952 able to present a mathematical model of the depolarization of
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the cell membrane. For this effort they received the Nobel prize in 1963 (shared
with John C. Eccles).

Hodgkin and Huxley showed that upon depolarizing the cell membrane, the
permeability to sodium suddenly increases which allows the voltage and concen-
tration gradients to push sodium ions into the cell. The sodium influx increases the
membrane potential in an effort to reach the equilibrium potential of the sodium
ions (55 mV), see Figure. 1.3.

Before equilibrium is reached, however, the permeability to potassium increas-
es which allows the voltage and concentration gradients to push potassium ions
out of the cell. The potassium efflux counteracts the sodium influx which causes
the membrane potential to peak around 50 mV and slowly decrease. Today, we
know that these effects are excerted in ion channels that actively open and close
according to a certain set of rules.

The depolarization also triggers the adjacent parts of the cell membrane, thus,
causing it to spread and conduct along the fiber. The effect is very similar to when
lining up dominos close to each other and tipping one of them over. The “depolar-
ized” domino hits the neighboring domino and tips it over which causes the next
one to do the same and so on until the last domino has fallen.

To be able to do this again, all dominos need to be erected and lined up. This is
quite the same as in the nerve fiber where the ion channels and the ion concentration
need to be restored before a new AP may be conducted, called repolarization.

The speed with which the AP propagate, the conduction velocity, is mainly
dependent on the square root of the fiber diameter. In the case of the squid giant
axon this means a conduction velocity of about 30 m/s; a quite remarkable value.

There is an evident trade-off here between transmission delay on one hand and
“bulkiness” on the other. Since space is at premium for any organism, the enormous
size of this axon betrays something about the importance of a short transmission
delay in this case. A closer look would consequently disclose that this axon is
part of the squid’s jet-propulsion system; a quite reasonably function to prioritize
considering the obvious drawbacks of becoming a prey.

1.1.3 Myelination

The propagation of the AP depends on the coordinated action of both the active
current that flows through the voltage-dependent ion channels as well as the passive
current that continuously flows through the cell membrane. As a consequence, the
conduction velocity is determined by both these factors.

One way of improving the passive current flow is to increase the diameter of
the axon because this reduces the internal resistance of the axon. The consequent
increase in conduction velocity presumably explains why invertebrates such as the
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Figure 1.4: A myelinated nerve fiber where one Ranvier node is enlarged clearly
showing the multiple layers of the myelin sheath around the cell membrane. At
the nodes, the cell membrane is exposed to the extracellular medium which allows
the AP to be regenerated.

squid has evolved giant axons.
Another way of improving the passive current flow is to insulate the axonal

membrane because this effectively reduces the current leakage, thereby increasing
the distance of passive current flow along the axon. In vertebrates, this strategy
has resulted in myelination which is a more cost efficient solution to the delay/bulk
trade-off than the increased-diameter approach.

With the myelination strategy, the time-consuming AP generation in an adja-
cent segment, denoted as regeneration, may be done at discrete points along the
axon instead of more or less continuously. In principal, every regeneration takes
a certain amount of time, so, by extending the distances between the regeneration
points, the AP is forced to propagate in “jumps” and the conduction velocity is
increased.

The regeneration takes place in between the insulated parts at the so-called
nodes of Ranvier where the axon is exposed to extracellular medium, see Fig-
ure 1.4. The internode distance is a balance between conduction velocity and re-
liability; a longer distance yields increased velocity but decreased realiability of
the regeneration. Typically, the nodes are separated by a distance corresponding
to about a hundred axon diameters which results in conduction velocities ranging
from 6 m/s to more than 130 m/s.2

Vertebrates thus have a rich variety of nerve fibers to choose from in order to
find the best trade-off between transmission delay on one hand and the space occu-

2As a rule of thumb, the conduction velocity [m/s] is given by multiplying the fiber diameter [µm]
with 6 [24, p. 72].
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Figure 1.5: A nociceptor with the most important parts indicated.

pation on the other. What’s best in the particular case depends on what information
that is to be transmitted and the importance of a short transmission delay.

1.1.4 Sensory organs and receptors

Highly specialized nerve endings, called receptors, convert physical events into
encoded messages that are passed on for further processing.

Using only five basic senses, somatic sensation (mechanical, thermal, or chem-
ical stimuli), vision (photons), audition (sound waves), vestibular sensation (head
movements), and chemical senses (taste/odour), we are able to get a good percep-
tion about our surrounding environment.

Presenting all these sensory systems would, however, be a daunting challenge.
This presentation will therefore be limited to the somatic sensory system. In par-
ticular, only the receptors responsible for reporting temperature and painful stimuli
will be discussed.

These receptors are called nociceptors (noceo, Latin: ’do harm’) because they
primarily detect noxious stimuli. Basically, the nociceptors are constituted by free
nerve endings, see Figure 1.5, of either slowly conducting myelinated (Aδ) nerve
fibers (about 20 m/s) or even slower unmyelinated (C) nerve fibers (less than 2 m/s).

Not surprisingly, the Aδ nociceptors respond to dangerously intense mechani-
cal or mechanothermal stimuli that require an urgent response whereas, in general,
the C nociceptors respond to less urgent sensations such as thermal, mechanical,
or chemical stimuli.

An important discovery was the finding that nociception actually involves spe-
cialized neurons, not simply excessive discharges of the neurons that respond to
normal stimulus intensities. Regardless of the discharge rate of non-nociceptors,
the stimulus is normally not perceived as painful whereas, in contrast, already low
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discharge rates of a population of nociceptors actually is.
There are two characteristics of nociceptors that also make them different from

other sensors, namely: sensitization, and modulation. Sensitization is caused by
tissue damage and the release of various substances that bring normally silent no-
ciceptors into a sensitized state. The resulting phenomenon is hyperalgesia when
even light touch could be painful. This may, for example, be experienced after
being exposed to the sun for too long.

The modulation of pain is not completely understood but it is clear that neurons
in the spinal cord have the ability to inhibit the relaying of the nociceptor APs to
higher neurons and ultimately our consciousness. An everyday example of this is
the ability to reduce the sensation of sharp pain by activating mechano receptors.
For example, by gently blowing towards an injured site, the pain is relieved.

The perhaps most intriguing finding in this latter respect was the finding of
endogeneous opioids (the endorphins belong to this family) and opiate sensitive
regions in both the central and the peripheral nervous system. It was now clear that
pain may be relieved in two independent ways: disabling the nociceptors (“silenc-
ing the source”) and/or down-modulating the transmission (“cutting the wire”).

1.2 Recording C-fiber APs

In order to further increase the knowledge of the functional properties of the C
nociceptors, it was necessary to obtain recordings of the emitted APs. A task that
was not easily accomplished.

First, the fibers are bundled together into fascicles with a thick insulating con-
nective tissue, the perineurium, surrounding it, see Figure 1.6. Second, the fasci-
cles are bundled together with blood vessels and enwrapped in a connective tissue
sheath, the epineurium. Third, using a thin needle electrode, it is indeed possible
to penetrate the nerve and position the electrode in a fascicle. APs from a large
number of nerve fibers are recorded, however, and individual studies of the APs
originating from a particular nerve fiber is difficult.

1.2.1 The marking phenomenon

To overcome this problem, Hallin and Torebjörk introduced a method that shows
the excitation of a C-fiber by utilizing the so-called marking phenomenon. The
phenomenon stems from the slight decrease of a fiber’s conduction velocity after
an AP has been conducted. The conduction velocity then slowly returns to its initial
value.

The principle of the method is to apply an electrical impulse repetitively, at a
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Figure 1.6: A needle electrode inserted into a nerve with the most important parts
identified. As the enlargement shows, the electrode records from several fibers at
the same time due to its large size compared to the nerve axons.

constant, low frequency (0.25 Hz), into the innervation territory of the C-fiber un-
der study, see Figure 1.7. For each impulse, a single AP is evoked and appears in
the recording after a certain latency. To document the response characteristics of
the C-fiber, a physiological test stimulus (e.g., mechanical, temperature, or chem-
ical) is applied into the receptive field of the fiber. If such a stimulus generates
additional APs, the conduction velocity of the affected fiber decreases. The fol-
lowing APs excited by the repetitive stimuli thereby show a noticeable increase in
latency.

This change in latency is used as a marker to indicate that the C-fiber responded
to the applied physiological stimulus. In addition, the magnitude of the latency
increase provides information about the number of APs that were generated by the
test stimulus.

To enhance the efficiency of these experiments, a computer-supported record-
ing system is used that both emits the repetitive stimuli and records the responses.
Often, several fibers are activated and recorded simultaneously, but due to differ-
ences in conduction velocity of the individual C-fibers, the APs are spaced in time.
Using the marking phenomenon, it is thus possible to discriminate and classify
separate C-fibers by examining their characteristic latency responses.

1.2.2 Analyzing the signal

Previously, the analysis of the recorded traces was carried out manually which
was very time consuming. To facilitate the analysis, a computer program that de-
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Figure 1.7: The recording setup. Repetitive, electrical impulses are delivered
through a needle electrode inserted into the skin of the foot. Each triggered nerve
fiber emits a single AP that is recorded at the knee via an electrode inserted into
the corresponding nerve. In this case, there are two simultaneously active fibers
which APs are recorded after a certain latency. The recorded APs for a particu-
lar triggering impulse are displayed from left to right in the falling leaf display.
Successive responses are displayed in traces from top to bottom. To study the
characteristics of a particular nerve fiber, an additional stimulus (e.g., mechanical,
electrical, or chemical) is applied into the innervation area. The fibers respond-
ing to the additional stimulus are easily detected by their delayed response to the
repetitive stimuli. In this case, the mechanical stimulus applied in between trace
three and four triggered the first fiber as shown by its increased latency. Following
this, the fiber recovers gradually as indicated by the APs returning to the latency
prior to the activation (indicated by a dotted line). The right fiber did not respond
to the mechanical stimulus and, hence, its latency was retained throughout the
recording.

tects the APs, discriminates between APs originating from different C-fibers, and
estimates latency shifts and recovery constants quantitatively was developed, see
Figure 1.8. The most important aspects of the analysis are the detection and dis-
crimination of the APs. Once this is accomplished, it is straight-forward to fit a
parametrical model to the data in order to obtain the sought parameters.



12 Chapter 1. Introduction

(a) (b) (c)

Figure 1.8: Sample results from the three-step analysis algorithm: (a) the detected
APs, (b) the resulting five tracks after tracking, and (c) the final trajectories ob-
tained by fitting an exponential function to the tracks.
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Figure 1.9: The motor unit consists of the motoneuron in the spinal cord, the
myelinated axon, the motor endplate, and the innervated muscle fibers.

1.3 The constitution and function of muscles

As noted already by Galvani and Volta, a muscle contraction is initiated if the
corresponding nerve is stimulated by an electrical impulse. Further experiments
showed that the muscles actually shared many of the electrical characteristics of
the nerves. It was discovered that the muscles too may be triggered by an electrical
impulse and conduct an AP after being triggered. The latter was demonstrated by
using a second frog leg as a detecting device and attaching its nerve to a muscle of
the first leg.

1.3.1 The motor unit

Later anatomical studies also revealed that the muscles, similar to the nerves, are
constituted by individual fibers where each fiber is a single cell. The muscle cell
membranes also share most of the properties of the nerve cell membranes. The
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Figure 1.10: The neuromuscular junction, or motor endplate. When the AP ar-
rives through the myelinated axon, it causes the vesicles to empty their acetyl-
choline molecules into the synaptic cleft. The neurotransmitter diffuses across
the cleft and binds to the corresponding receptor. This activates the receptor and
lets sodium ions (Na+) pass through which depolarizes the cell membrane. If the
depolarization is large enough, an AP is triggered.

results from the study of the squid giant axon are in general applicable to muscle
fibers as well. To mention a few examples, the Hodgkin-Huxley model may be
used to model muscle fiber APs and the conduction velocity of the muscle fibers
increase with diameter as is the case for nerve fibers. In conclusion, what has been
said above about the electrical characteristics of nerve fibers is in principal valid
for muscle fibers as well.

The extension of the fibers differ, however. Muscle fibers are limited to the
muscle whereas nerve fibers extends from a motoneuron in the spinal cord, via a
peripheral nerve, all the way to the innervated muscle, see Figure 1.9.

The muscle is organized into functional groups of fibers each controlled by the
same motoneuron. This constellation constitutes the smallest functional unit of the
muscle and is called a motor unit (MU). With its axon, the motoneuron innervates
its muscle fibers (typically a few hundred) via the neuromuscular junction (NMJ),
called the motor endplate, one for each muscle fiber.

The different MUs are intermingeled with each other and have their muscle
fibers randomly distributed. Thus, a particular fiber is in general surrounded by
fibers belonging to other MUs.
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Figure 1.11: The principal constitution of the myofibrils that make up the bulk
of the muscle fiber. (a) Each myofibril is made up of long chains of sarcomeres
that are attached through the Z discs and consists of actin and myosin filaments.
(b) During a contraction, the myosin heads adhere to the actin and undergo a
conformational change that forces the Z discs together.

1.3.2 The motor endplate

In contrast to nerve and muscle fibers where the information is carried by electri-
cal events, the APs, the motor endplate use chemical events, neurotransmitters, as
information carriers.

Whenever an AP enters the synapse at the nerve terminal, the transmitter sub-
stance (acetylcholine) is released and diffuses across the synaptic cleft to receptors
at the muscle fiber membrane, see Figure 1.10. When the transmitter binds to the
receptors, sodium channels open and the cell membrane is depolarized, thereby
initiating an AP.

Because of the construction of the motor endplate, there is a delay (≈ 0.5 ms)
associated with the arrival of the nerve impulse at the terminal and its further exci-
tation of the muscle fiber. Moreover, this delay has a certain variability, the jitter,
which is stochastic (standard deviation about 5-40 µs) and may change with dis-
ease. Hence, measuring the jitter is a valuable tool when studying the functional
properties of the MU.
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Figure 1.12: A detailed view of a contraction according to the sliding filament
theory. (a) The myosin head bind to the actin. (b) The myosin undergoes a change
in shape which forces the actin to the right (the power stroke). (c) Through an
energy consuming process, the head is released from the actin and its shape is
restored.

1.3.3 Muscle contraction

The depolarization of the muscle cell membrane initiates mechanical changes in
the muscle fiber that makes it shorter through a minuscule machinery. The bulk
of each muscle fiber constists of bundled myofibrils that are made up of myosin
and actin filaments, see Figure 1.11. The filaments are organized into sarcomeres,
separated by the Z discs, and work like a rack where the heads on the myosin
filaments act as cogs that cling on to the actin filaments.

The conduction of the AP causes calcium (Ca2+) to be released which, accord-
ing to the sliding filament model, results in the following steps, see Figure 1.12:

1. The heads of the myosin bind to the actin filaments.

2. The heads are bended which causes a contraction by sliding the filaments
past each other, the power stroke.

3. By consuming energy, the heads are detached and straightened.

4. The process is repeated as long as there are calcium and energy available.

Whenever the membrane potential returns to its resting level, the release of
calcium ceases and the free calcium is quickly removed by efficient ion pumps. If
this does not work for some reason, the muscle will be “stiff” and unable to relax.
Rigor Mortis is the extreme of this situation. The free calcium causes the myosin
to cling to the actin and contract but is unable to detach due to lack of energy. This
condition remains until the filaments disintegrates in the decomposition process.

Due to the construction of the contraction machinery, a single AP causes a
twitch in the muscle fibers of the corresponding MU that consists of a quick in-
crease in muscle force followed by a somewhat slower return to zero, see Fig-
ure 1.13. By emitting a series of APs, the twitches summate to a smooth continu-
ous contraction producing a higher and more sustained force. By activating other
MUs as well, the muscle force may be increased even more.
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Figure 1.13: Each AP causes a quick increase in force excerted by the fibers within
the MU followed by a slow relaxation. These twitches integrate into a contraction
that is proportional to the triggering frequency. The diagrams show the contraction
(arbitrary units) when (a) the APs are three seconds apart, (b) the APs are 0.5 s
(2 Hz) apart, and (c) the APs are 0.1 s (10 Hz) apart. The times of arrival of the
APs are indicated by vertical bars.

In each muscle, there are 100-500 MUs that are working in parallell to provide
the correct muscle force. They are independently controlled by their individual mo-
toneurons through frequency modulation and increasing muscle force is obtained
by increasing the stimulation frequency of already active MUs and by recruitment
of new ones.

1.4 The line source model

From the first evident demonstration of the electrical activity, the electromyogram
(EMG), in contracting muscles, it has been clear that a good understanding of the
underlying processes is vital in order to interpret the EMG correctly. Electromyo-
graphy, in interplay with various anatomical techniques, has provided much of the
present knowledge of the structural organization and the nervous control of muscle.

A vital tool in gaining this knowledge has been, and still is, modeling and sim-
ulation. A simple and yet reasonably accurate model is the line source model that
is obtained by considering the AP as a convolution of a weighting function and
a transmembrane current lumped to the center of the muscle fiber. The weight-
ing function depends on the used recording electrode whereas the transmembrane
current depends on the particular muscle fiber. The resulting EMG signal is then
simply the sum of the contributions from all muscle fibers in the recorded muscle.

With the increased availability of digital computers, conducting simulations
has been simplified considerably. Computerized simulations require, however,
discrete-time models where the time axis consists of discrete points. This is differ-
ent from the real world where the time is continuous
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Figure 1.14: The importance of selecting an appropriate sampling period to avoid
aliasing is illustrated using a rotating wheel. Unless the sampling period is short
enough with respect to the period T , in which the wheel completes one full revolu-
tion, the samples constitute a “skewed” view of the continuous-time reality. In the
figure, the observed direction of the rotation is indicated by ’+’ for clockwise (cw)
rotation and ’−’ for counter-clockwise (ccw) rotation, respectively. The speed is
symbolized by the number of repititions of the direction indicator (’0’ for station-
ary rotation). As the figure shows, the correct direction and speed of rotation may
be observed for sampling periods Ts <

1
2T . For Ts = 1

2T , the correct speed may
indeed be observed, but the direction is ambiguous. Using longer sampling peri-
ods, the rotation observed in the samples no longer reflects the original rotation.
Denoting the original rotating speed as very fast cw, the observed rotation pass
through, in sequence, fast ccw, ccw, stationary, and slowly cw as the sampling
period increases (Ts >

1
2T ). In these cases, the observed rotation is an “alias” of

the original rotation; hence, the term aliasing for this type of distorsion.

1.4.1 Sampling and aliasing

The transformation, or discretization, from continuous time to discrete time is often
referred to as sampling because the continuous-time model is sampled (measured)
at discrete points in time. It is important that this is done sufficiently often to also
catch the fastest changing characteristics. If not, the discrete-time representation
become distorted through what is called aliasing. A good example of aliasing is in
movie sequences with accelerating cars where the wheels (preferrable with spokes)
are visible. First, the wheels (correctly) look like they are rotating faster and faster.
Then, the rotation (falsely) looks like it rotates backwards or even stops. In this
case, the sampling frequency (frame rate) is too low to catch the characteristics of
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Figure 1.15: The three most common electrode types with their pick-up distance
indicated: (a) the CN electrode, (b) the SF electrode, and (c) the Macro electrode.

the quickly rotating wheels.
Figure 1.14 shows this phenomenon from a little different perspective. Here,

the rotational speed is constant but the sampling frequency is changed. However,
the same observations as in the example above are illustrated.

Addressing the aliasing in the discretization process is an important issue.
It can be done in two ways: either the discretization frequency is selected high
enough with respect to the fastest changing characteristics, or these characterics are
removed by prefiltering before the actual discretization. In the example above with
the accelerating car, these alternatives correspond to either increasing the frame rate
of the camera, or covering the wheels using smooth hub caps prior to the shooting.

1.4.2 Electrode types

The EMG signal may be acquired using either surface electrodes that are attached
on the skin surface or, needle electrodes that are inserted transcutaneously into the
muscle. In this thesis, only the three most common needle electrodes are regarded,
see Figure 1.15: the concentric needle (CN) electrode, the single fiber (SF) elec-
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Figure 1.16: Examples of three APs as recorded with (a) the CN electrode, (b) the
SF electrode, and (c) the Macro electrode, respectively. Note the different scale of
the Macro AP.

trode, and the Macro electrode.
The CN electrode is a standard electrode used in clinical routine throughout the

world. It has an elliptical recording area (150×580 µm) in the beveled tip of a steel
cannula (diameter 0.45 mm). Often, the cannula is used as a reference electrode to
obtain bipolar recordings. The electrode sums the electrical field from a number of
muscle fibers in a given MU to obtain a motor unit action potential (MUAP). The
shape of the MUAP reflects the number of muscle fibers, the synchronicity of their
APs, and their concentration within the pick-up distance.

By using different electrodes, different resolutions can be obtained. For exam-
ple, it is possible to record APs from individual muscle fibers using the single fiber
(SF) electrode [86] [28]. This gives the possibility to study in detail some of the
physiological characteristics involved in the generation of the EMG signal. Sim-
ilarly, it is possible to record APs from entire MUs through the Macro electrode
[79]. This electrode provides a broader view that, in some cases, is more suitable
for diagnosis [71].

The SF electrode is constructed to selectively record APs from individual mus-
cle fibers. The recording surface is a wire (diameter 25 µm) exposed at a side port
of the electrode with the cannula as a reference. It is used to assess fiber density
(FD) and to measure the jitter in the motor endplate.

The Macro electrode is the opposite of the SF electrode in that it records APs
from the entire MU. Its recording area is the exposed tip (length 15 mm) of an
insulated cannula with a distant electrode as a reference. This results in a broader
view that may be used to estimate the total size of the MU and is in some cases
more suitable for diagnosis than what is provided by the CN electrode.
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1.4.3 Simulated APs

Using the line source model, fast and accurate simulations of different electrodes,
muscle fibers, and electrode positions are readily obtained. As an example of this,
Figure 1.16 shows three different APs as if recorded by the three most common
electrode types. Note that the y axis increases downwards in line with the conven-
tion of displaying EMG signals.

The diameter of the simulated fiber was selected to 55 µm corresponding to
a conduction velocity of 3.7 m/s. The electrodes were oriented perpendicular to
the muscle fiber where the SF electrode and the CN electrode were positioned at a
radial distance (center-to-center) of 100 µm.

The Macro electrode was positioned close to the fiber at a radial distance of
255 µm (a little more than the radius of the cannula plus the radius of the fiber).

1.5 The compound AP of the MU

By combining the line source model with knowledge about the constitution of the
MU, compound APs of the MU is readily obtained.

First a MU is generated with a certain number of fibers having certain diam-
eters and being distributed over a certain area, etc, in accordance with anatomical
knowledge. The number of fibers present in a particular area is referred to as the
mean fiber concentration (MFC).

Then, the insertion of the selected recording electrode is imagined. The “shuf-
fling effect” of the beveled tip is simulated by moving the affected fibers to the
upper side of the electrode, see Figure 1.17 (a).

Finally, the line source model is applied to each muscle fiber, taking the rel-
ative electrode position into account. The resulting individual APs are summed
to obtain the compound AP of the MU for the particular electrode selected, see
Figure 1.17 (b).

1.5.1 Changes in disease

The constitution and function of the MU may change in disease. The exact effect
is of course individual for each disease depending on which category it represents;
myopathies, neuropathies, or diseases in the neuromuscular junction.

Myopathies cause a loss or impairment of muscle fibers. In general the number
of fibers within the MU decrease, but fibers may actually split longitudinally or
regenerate in a compensatory process to meet the loss of fibers. Moreover, the
fiber diameter variation is often found to be increased, with abnormally small and
large muscle fibers.
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Figure 1.17: Example of a simulated MUAP obtained with a concentric needle
for a normal healthy muscle (MFC = 5 fibers/mm2). (a) A cross section of the
MU where the fibers and the electrode are shown. The semi circles indicate the
distances 100, 300, and 500 µm, respectively. (b) The simulated MUAP for three
discharges. On top, all discharges are drawn superimposed.

Neuropathies cause a loss of motoneurons or axons. In a compensatory pro-
cess, surviving axons branch off and reinnervate the orphaned muscle fibers by
collateral sprouting. Hence, the number of MUs decreases but their size in terms
of number of fibers increases. Other findings may be a change in diameter of indi-
vidual fibers and a temporarily increased jitter of recently reinnervated fibers.

Junctional diseases affect various key components that are vital for the function
of the MU. If, e.g., the acetylcholine receptors in the motor endplate are reduced in
number, the function of the muscle may be severely impaired. This may cause the
variability of the synaptic delay, the jitter, to increase, or the triggering to some-
times fail; a condition called blocking.

As a rule of thumb, myopathies are manifested by small MUAPs and often the
components of the MUAPs are “spread out” in time. Neuropathies are manifested
by large MUAPs with multiple peaks corresponding to the increased number of
fibers. The junctional diseases, finally, may often be diagnosed by the differences
in the MUAP over time through studies of, e.g., the jitter and/or the blocking.

1.6 EMG analysis

Electromyography is today a common and efficient diagnostic tool that allows the
clinician to follow changes in the neuromuscular system caused by disease pro-
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Figure 1.18: Intermingled MUAPs at various force levels with the firing frequency
exaggerated for clarity. The number of recruited MUs in each diagram is (a) one,
(b) two, and (c) three. The position of the peak is marked (◦ × +) for each indi-
vidual MUAP.

cesses.
The measured EMG signal is the summed contribution from all active muscle

fibers within the entire muscle. Depending on the electrode, distant fibers con-
tribute in a varying extent. The SF electrode, for example, effectively attenuates
the contribution from distant fibers owing to the arrangement of the recording sur-
face positioned within the reference.

The EMG signal is made up of the compound APs from each MU, see Fig-
ure 1.18. Because the muscle force is regulated by frequency modulation and
recruitment/decruitment of MUs, the number of active MUs and their repetition
frequency is varying with force level. Thus information regarding multiple MUs
can be retrieved from a single EMG signal.

By decomposing the EMG signal and separating compound APs originating
from different MUs, the analysis is often simplified. Each compound AP may then
be analyzed separately which may include an effort to gain knowledge about the
MU’s constitution (e.g., through the MFC) or functional properties (e.g., through
the jitter).

1.6.1 Analyzing the MUAPs

If possible, a complete decomposition of the MUAP into its constituent muscle
fiber APs would add considerable information about normal and diseased MUs.
The number of fibers within the pick-up distance of the electrode, for example,
would be directly given by the number of AP components. Moreover, the jitter
would be readily estimated through the variability in timing of the individual APs
in subsequent discharges.

Deriving such an algorithm would be a daunting challenge, however. Perhaps
is it even impossible unless sophisticated multichannel electrodes are adopted.
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Figure 1.19: Example of applying the deconvoluting prefilters to three discharges
of the MUAP in Figure 1.17 (b). (a) The partially deconvolved signal where each
individual AP is monophasic. The diagram shows two active APs within the pick-
up distance. (b) The fully deconvolved signal where each AP is transformed to a
narrow impulse. In this signal, the two active APs are clearly visible. On top, all
discharges are drawn superimposed.

Instead, a simpler approach is sought. To discriminate between myopathies
and neuropathies, for example, it is sufficient to know the MFC which is directly
proportional to the number of fibers within a certain radius (e.g., the pick-up dis-
tance).

A scaled version of this number works just as well and may be retrieved easily
by assuring a direct relation between the number of fibers and some measurable
quality of the analyzed signal. For example, knowing the amplitude of the com-
pound AP would be sufficient in order to discriminate between myopathies and
neuropathies if it was directly proportional to the number of fibers within the pick-
up distance.

Normally, however, this is not the case because APs have positive and nega-
tive phases that make the sum unpredictable. This is called phase canceling. By
prefiltering the compound AP with a filter that removes the multiphasic shape, a
signal more suitable for diagnosis may be obtained, see Figure 1.19 (a). This sig-
nal is called the partially deconvolved MUAP because it removes the multiphasic
shape only and keeps the “smearing” effect.

In the general case, the amplitude of the prefiltered compound AP is, however,
not directly proportional to the number of fibers within the pick-up distance be-
cause the individual APs are distributed in time. Hence, the number of fibers may
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be increased without affecting the amplitude.
A better measure in this respect might be the area because the area is always

adding up regardless of the position in time. This requires that the signal being
measured is monophasic.

To measure the jitter, there are two things to consider: the individual APs must
be distinguishable, and neighboring APs must not disturb the localization. Both
these requirements are met if the APs could be transformed into narrow impulses.
Again, using a suitable prefilter this could be accomplished, see Figure 1.19 (b).
This signal is called the fully deconvolved MUAP because it seeks to remove all
the shaping of the APs while it keeps the amplitude and timing information.

1.7 Further reading

To obtain more information on many of the issues presented above the books listed
below are good starting points.

• D. Purves, G. J. Augustine, D. Fitzpatrick, L. C. Katz, A.-S. LaMantia, and
J. O. McNamara, Neuroscience, Sunderland, MA: Sinauer Associates, Inc.,
1997

• E. R. Kandel and J. H. Schwartz, Principles of Neural Science, New York,
NY: Elsevier North Holland, Inc., 1981

• S. Deutsch and A. Deutsch, Understanding the Nervous System: An Engi-
neering Perspective, New York, NY: IEEE Press, 1993

• B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J. D. Watson Molec-
ular Biology of the Cell, second edition, New York, NY: Garland Publishing,
Inc., 1989

1.8 Objective of this thesis

The present thesis provides our perspective of the signal processing challenges
arising in the neurophysiological field. The overall objective of this work is to
develop methods that extract information from neural and muscular signals, not
available by existing methods.

In particular, we address three principal categories within this field and refer to
these as: modeling; prefiltering and parameter assessment; and data detection and
classification. These are further presented below.
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1.8.1 Modeling

Without doubt, the key tool in neurophysiology is the acquisition of signals and
events that are used for diagnosis and research. A basic requirement is here the
knowledge of the relationships that connect a certain signal property with a certain
neurophysiological condition. As in virtually any other area, one efficient way
in gaining this knowledge is by means of experiments followed by modeling and
simulation.

The most important model presented herein is the modified line source model
that models the recording of APs from a muscle fiber. The model has been imple-
mented in a simulation program [83] that may contribute to new insights into the
underlying processes of the generation of the EMG signal. This may in the longer
perspective lead to improved diagnostic methods.

In a shorter perspective, this model can be used for research and educational
purposes since it enables fast and accurate simulations of different anatomical con-
ditions. Within a few seconds, the corresponding APs may be generated and visu-
alized. Furthermore, benchmarks on different analysis algorithms may be carried
out.

1.8.2 Prefiltering and parameter assessment

Within the daily routine, in particular, continual efforts are being made to make the
examinations more efficient and to improve the reliability in diagnosis. Most of
these efforts concern algorithms that are characterized by prefiltering (often using
simple filters) followed by an assessment of the parameters to be used for diagnosis.

Based on a Wiener filter design, we present a more elaborate prefiltering meth-
od that strives at optimizing the filtered signal for the subsequent parameter assess-
ment algorithm. Depending on the situation, the optimal prefilter will be different.

The current results from this approach indicate several advantages. First, the
variability of the resulting parameter estimates decrease because the parameters
are assessed using a signal that is more suitable for the task. Second, the need for
different electrodes for examinations of various types may be reduced by applying
specifically designed prefilters to enhance different features in the signal. Third,
the Wiener filter design method provides a good intuitive coupling between the de-
sign variables and the properties of the resulting filter, which simplifies the tuning
process.

1.8.3 Data detection and classification

When studying, e.g., the membrane properties of nerve C-fibers, APs originating
from a specific C-fiber must be detected and identified. With the special record-



26 Chapter 1. Introduction

ing technique being used, the measured parameters form clusters in the parameter
space. These clusters have (possibly) time-variant centroids, which effectively dis-
qualify most clustering algorithms.

By considering the problem from a target tracking point of view, however, the
APs originating from a particular C-fiber are tracked in subsequent responses to
electrical stimulation. With this approach, an algorithm has been designed that has
made the previously time-consuming, manual analysis much more efficient [57]
[44].

This algorithm is a general implementation of a target tracker; only the track-
ing parameters and the predictor are coupled with the particular problem. Thus,
this approach may be applied to virtually any problem where events occurring in
multiple detections need to be classified.

1.9 Outline of the thesis

This thesis is divided into two major parts, Methods and Applications, respectively,
of which the latter constitutes the main contribution.

Part I consists of Chapter 2-5 and is essentially a recapitulation of the most
important methods used in the applications. These chapters have a disposition
governed by the applications part, but are otherwise self-contained and may be
read independently of each other.

In Chapter 2 an asynchronous matched filter (MF) detector needed for the ap-
plication described in Chapter 9 is derived and analyzed. Because the assessment
of important performance properties are crucial for the tuning of the algorithms in
the applications chapter, this chapter provides the required framework that is then
examplified on a hypothetical test signal.

Chapter 3 presents how a Kalman filter based on a continuous-time model is
designed and tuned. Kalman filters are used by the multiple hypothesis tracking
(MHT) algorithm, c. f. Chapter 4, where they provide predictions and assist in the
track evaluation. Because it is important with good estimates in this regard, this
chapter presents a consistency analysis procedure as well as an minimum mean
squared error estimate of the initial values.

Chapter 4 provides a general description of multiple target tracking. Some
common tracking algorithms are mentioned where the multiple hypothesis tracking
(MHT) method receives most attention because it is used in the applications of
Chapter 8 and Chapter 9.

Deconvolution using Wiener filters is the topic of Chapter 5 and this method
is later used in Chapter 8 to filter and refine EMG signals. The implementation
selected for this thesis is presented as well as an illustrative example.
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The first chapter of Part II, Chapter 6, describes a modified line source model
that can be used to simulate APs fast and accurately. The importance of avoiding
aliasing when discretizing the model is stressed and the consequences of not doing
so are shown through simulations. Moreover, through a simple transformation of
the electrode specific weighting functions, a finite muscle fiber length is easily
incorporated into the model.

In Chapter 7 represents a brief introduction to simulation of entire MUs. The
anatomical and physiological assumptions and parameters used in this thesis are
presented. Moreover, the changes in the MU induced by disease are mentioned and
exemplified with cross sections and resulting compound APs of simulated MUs.

Chapter 8 explores the possibility to improve the assessment of muscle fiber
concentration (MFC) and jitter by combining a MUAP obtained with a CN elec-
trode with Wiener filter deconvolution, c. f. Chapter 5. The performance is com-
pared both to a method currently used in clinical routine as well as to a recently
proposed method for improving the jitter estimations. To discriminate between in-
dividual APs that originate from different muscle fibers, the MHT/Kalman tracking
algorithm is used, c. f. Chapter 3 and Chapter 4.

Detection and classification of nerve APs is described in Chapter 9. The clas-
sification is implemented as a target tracking problem where the MHT/Kalman
tracking method is used, c. f. Chapter 3 and Chapter 4. Examples on data obtained
from real recordings are presented.

Chapter 10, finally, ends this thesis with some concluding remarks and presen-
tation of possible work in the future.

1.9.1 Contributions of the author3

Chapter 9 was presented at

Björn Hansson, Clemens Forster, and Erik Torebjörk, “Matched Filter-
ing and Multiple Hypothesis Tracking Applied to C-fiber Action Po-
tentials Recorded in Human Nerves,” in Proceedings of the SPIE Con-
ference (AeroSense ’98), Signal and Data Processing of Small Targets,
volume 3373, Orlando, FL, September 1998, pp. 582–593.

It is also described in

Björn Hammarberg (Hansson), Clemens Forster, and Erik Torebjörk,
“Parameter Estimation of Human Nerve C-Fibers using Matched Fil-
tering and Multiple Hypothesis Tracking,” IEEE Transactions on Bio-
medical Engineering, volume 49, no. 4, April 2002.

3When studying the author lists, it might be practical to know that, during the course of this work,
the author got married and changed his last name from Hansson to Hammarberg.
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The muscle fiber model in Chapter 6 is described in

Björn Hammarberg (Hansson) and Erik Stålberg, “Insights into the
Line Source Model for Improved Muscle Action Potential Modeling,”
submitted to IEEE Transactions on Biomedical Engineering.

The motor unit model of Chapter 7 in combination with the line source model is
described in

Lars Karlsson, Björn Hammarberg, and Erik Stålberg, “A Muscle Mod-
el to Study Electromyographic Signals,” submitted to Computer Meth-
ods and Programs in Biomedicine.

The work in Chapter 8 will be presented in

Björn Hammarberg, Mikael Sternad and Erik Stålberg, “A Wiener Fil-
ter Approach to Electromyography,” in preparation.

In addition to the scientific work listed above, the author has contributed to the
following papers that are connected to this thesis to a various degree:

• C. Weidner, M. Schmelz, R. Schmidt, B. Hansson, H. O. Handwerker, and
H. E. Torebjörk, “Functional Attributes Discriminating Mechano-Insensitive
and Mechano-Responsive C Nociceptors in Human Skin,” the Journal of
Neuroscience, volume 19, no. 22, pp. 10184–10190, November 1999.

• A. Sandberg, B. Hansson, and E. Stålberg, “Comparison between concentric
needle EMG and macro EMG in patients with a history of polio,” Clinical
Neurophysiology, volume 110, no. 11, pp. 1900–1908, November 1999.

• C. Weidner, M. Schmelz, R. Schmidt, B. Hammarberg, K. Ørstavik, M.
Hilliges, H. E. Torebjörk, and H. O. Handwerker, “Neural Signal Processing
– the Underestimated Contribution of Peripheral Human C-fibers,” submit-
ted to the Journal of Neuroscience.

1.9.2 Financial support

We gratefully acknowledge the financial support obtained from the Swedish Med-
ical Research Counsil (ES, 135) and (ET, 5206), the Deutsche Forschungsgemein-
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CHAPTER 2

Matched filter detection

DETECTING signals hidden in high levels of noise is a delicate task. If the
signal is a member of a set of signals with known shapes and if the color of

the noise is known, then matched filtering constitutes a standard signal processing
technique for optimally enhancing and detecting the signal [19].

In this chapter, a discrete-time matched filter (MF) detector will be derived and
analyzed from a general point of view. The task of the MF detector is to analyze
the given signal and to report any possible occurences of the sought signal to some
post-processing algorithm. Discussion of application specific issues is postponed
to Chapter 9 where matched filtering is used to detect action potentials recorded in
a human nerve.

First, a synchronous MF detector (SMFD) is derived and analyzed from a the-
oretical perspective. An asynchronous detector which is needed for the application
in Chapter 9 is then derived.

Abandoning the assumption of synchronous detection affects the performance
expressions, however, and a thorough theoretical analysis is not tractable. Instead,
the performance of the asynchronous MF detector (AMFD) is analyzed through
Monte Carlo simulations.

2.1 Derivation

The expressions for the synchronous MF detector, derived next, form a foundation
to the succeeding analysis of the asynchronous MF detector.

31
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2.1.1 A synchronous MF detector

The detection problem can be described by the following question: Is there a signal
of known shape present in the recorded data? Under certain idealized conditions,
the answer is given by the MF detector. The derivation of the SMFD in this section
is based on the following key assumptions:

Assumption 2.1 Finite duration – The signal has a finite length or duration.

Assumption 2.2 Known signal shape – The signal amplitude is unknown but its
shape is known and is described by a signal template.

Assumption 2.3 Single signal – There is at most one signal in the recorded data.

Assumption 2.4 Known arrival time – The arrival time of the signal is known and
the detector can test for the signal’s presence at the most favorable time instant.

Assumption 2.5 Stationary, additive noise – In addition to the possible signal,
the data contains stationary, additive, zero-mean noise that represents anything
that cannot be described by a scaled signal template.

Assumption 2.6 Synchronous sampling – If the data has its origin in continuous
time, the sampling is synchronized with the signal so that the sampled signal is
equal in shape for all occurences.

With the assumptions above, the data may be described by a sum of a signal
component and a noise component. Denoting the recorded discrete-time data by
z(n), we may write

z(n)
4
= s(n) + η(n) (2.1)

where z(n), s(n), and η(n) constitute samples of the data, the signal, and the noise,
respectively. They are all p-dimensional vectors in line with Assumption 2.1 and
are defined as

z(n)
4
=

(
z(n) z(n− 1) . . . z(n− p+ 1)

)T
(2.2)

s(n)
4
=

(
s(n) s(n− 1) . . . s(n− p+ 1)

)T
(2.3)

η(n)
4
=

(
η(n) η(n− 1) . . . η(n− p+ 1)

)T
(2.4)

where T denotes the vector transpose. The noise η(n) is assumed to be stationary
and zero mean according to Assumption 2.5.



2.1. Derivation 33

A p-dimensional normalized template s and an amplitude µ are introduced to
describe a single signal present in the recording at a particular arrival time na in
line with Assumption 2.1-2.4

s(na)
4
= µs . (2.5)

This template is valid for all arrival times under Assumption 2.2 and, in addition,
for all sampled continuous-time signals under Assumption 2.6.

The objective is to determine whether the desired signal is present or not in
the snapshot z(na) which may be described by either of the two hypotheses: H0

or H1. Under hypothesis H0, the data is assumed to contain noise only (µ = 0),
whereas under hypothesis H1, the data is assumed to contain exactly one signal as
well as the noise (µ > 0). This is summarized by

H0 : µ = 0 (2.6)

H1 : µ > 0 (2.7)

where the actual signal detection is then equivalent to determining which hypothe-
sis that applies to the recorded data.

From the definition in (2.5), it follows that all signal energy has been received in
z(n) at the arrival time na. Hence, all information about the presence of the signal
µs is then available. This information is disturbed, however, by the noise η(n).
If it were possible to attenuate the noise and/or amplify the signal, the detection
situation would be improved.

The MF approach addresses this problem by considering the distribution of the
signal energy in time and preprocessing the measurement vector z(n) using a linear
filter prior to the actual detection. If we introduce the filter impulse response

h
4
=
(
h(0) h(1) . . . h(p− 1)

)T
, (2.8)

the filter output is

m(n) =

p−1∑

i=0

h(i)z(n− i) = hT z(n) . (2.9)

As shown in [72], the filter output m(na) is, under the assumptions stated
above, a sufficient statistic for µ, i.e., it contains all information necessary to opti-
mally deciding whether the signal is present (µ > 0) or not (µ = 0). The decision
that the prescribed signal template s is present is then made whenever m(na) ex-
ceeds a given threshold level m0. With a properly designed filter, this threshold



34 Chapter 2. Matched filter detection

test is uniformly most powerful for testing H0 versus H1 and the corresponding fil-
ter design is equivalent with maximizing the signal-to-noise ratio (SNRmf ) at the
time na [19]. The resulting optimal impulse response ho is then said to consitute a
matched filter.

Both ho and the resulting SNRmf may be calculated in terms of the known
signal template vector s and the (assumed known) p|p covariance matrix Rηη of
the noise η(n) according to [19] [72]

ho =
R−1

ηηs
√

sTR−1
ηηs

(2.10)

SNRmf = µ2sTR−1
ηηs . (2.11)

For the special case where the noise is white (R−1
ηη = (σ2I)−1 = 1

σ2 I), the
expressions (2.10) and (2.11) are simplified to

ho =
s√
σ2sT s

(2.12)

SNRmf =
µ2

σ2
sT s . (2.13)

Combining (2.5) and (2.9)-(2.11), we obtain some interesting properties of this
matched filter, namely

E(m(na)) =
sTR−1

ηη√
sTR−1

ηηs

E(z(na)) (2.14)

H0=
sTR−1

ηη√
sTR−1

ηηs

E(η(na)) = 0 (2.15)

while

E(m(na))
H1=

sTR−1
ηη√

sTR−1
ηηs

E(s(na) + η(na))

=
µsTR−1

ηηs
√

sTR−1
ηηs

=
√
SNRmf ∝ µ (2.16)

where E(·) is the expectation with respect to η(n). These relations will be utilized
in Chapter 9 to estimate the amplitude. The variance of m(na) is identical under
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the two hypotheses as shown by

V (m(na))
4
= E (m(na) − E(m(na)))

2 (2.17)

= E


sTR−1

ηηη(na)√
sTR−1

ηηs




2

=
sTR−1

ηηE(η(na)η
T (na))R

−1
ηηs

sTR−1
ηηs

=
sTR−1

ηηs

sTR−1
ηηs

= 1 . (2.18)

2.1.2 An asynchronous MF detector

In the previous section a synchronous MF detector was derived, i.e. the arrival
time na, where all signal energy is received and the threshold test is carried out,
is known to the detector. In the practical cases considered in this thesis, na is not
known, however. Therefore, in addition to merely decide whether the signal is
present or not, the detector also has to produce an estimate n̂a of the true, unknown
arrival time na. In this section the trivial threshold detector presented above is
extended to handle the asynchronous detection.

The standard procedure when the arrival time na is unknown is to estimate
it from the received data. The maximum likelihood (ML) estimate of the arrival
time is the point of time that maximizes the MF output m(n) within an interval
containing the signal. The main drawback with this method is that strong noise
peaks may prevent weak signals from being detected properly. This performance
loss can be evaded if, like in this thesis, all indications of a possible detection are
reported and post-processed, where the reports are classified into false alarms and
actual detections. Assuming that the post-processing is correct, the detection of
weak signals are improved compared to the ML approach.

In most practical cases, the MF output is of lowpass character and a simple peak
finding algorithm that reports all positive peaks above the detection threshold m0

can be used as an asynchronous MF detector. In this thesis, this detector is selected
because of its implementation simplicity and resemblence to the synchronous MF
detector that is well-known and accurate. The drawback is that analyzing its per-
formance in a formal manner is difficult. Due to its nonlinear processing of the MF
output, expressions for its statistical performance are therefore not tractable and
Monte Carlo simulations are used instead.

Despite the non-tractable statistical performance of the AMFD, some conclu-
sions about its mean and variance may be drawn from its properties. First, note
that the noise may cause the peak observed in the MF output to be shifted in time.
Thus, there is always a non-zero probability that the peak found in the MF output
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is at some sample other than na. Because this happen more often if the noise level
is high compared to the signal, the mentioned probability increases as the SNR
decreases.

The statistical performance of the AMFD is thus different from the SMFD. The
mean of the MF output in the SMFD is (per definition) calculated solely from the
sample values at the arrival time na. In contrast, the AMFD may report a sample
n̂a 6= na due to the peak being shifted by the noise as discussed above. Because
the AMFD reports the position of the peak, i.e., a maximum in the MF output,
m(n̂a) ≥ m(na). This means that the mean of the reported MF peak output is
larger for the AMFD compared to the mean of the MF peak output of the SMFD.
For small SNRs, the difference is larger because the MF output peak is misplaced
more often, see Figure 2.2 below.

Consequently, the variance of the AMFD MF peak output is decreased com-
pared to the SMFD MF peak output because large neighboring values are reported
instead of smaller values at the true arrival time na. As for the mean, the effect
is more pronounced at low SNR levels; the peak value is then larger than m(na)
more often.

From the discussion above, it is anticipated that the performance of the AMFD
is different to the SMFD. In the next section the performance is evaluated further
through Monte Carlo simulations.

2.2 Performance

In this section the performance of the two MF detectors will be analyzed and char-
acterized. This type of knowledge is important when applying the AMFD to the
applications in mind for the thesis. When possible, analytical expressions will be
presented and analyzed. For the other cases, Monte Carlo simulations will be used.
Especially the performance analysis of the nonlinear AMFD depends extensively
on Monte Carlo simulations due to the difficult expressions concerning this detec-
tor.

2.2.1 Simulation setup

Because the simulations performed in this chapter should form a foundation to
Part II, it is important that the test signal selected for the simulations in this chapter
reflects a wide variety of signals.

Most real signals have their power concentrated to a certain frequency range
which is of either lowpass, bandpass, or highpass character. Since the phase of
the signal disappears in the matched filtering, it is of subordinary interest in this
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Figure 2.1: The signal to be detected (left) and its power spectrum (right). Depend-
ing on the parameters f0 and B, a matched filter based on this signal characterizes
any matched filter of lowpass, bandpass, or highpass character.

respect.
A suitable choice for the test signal is, thus, a parameterized signal that has its

power uniformily distributed over a certain interval controlled by its parameters.
Such a signal is depicted in Figure 2.1 and described by

so(t)
4
=

{
−
√

2γ−1f0 : t = 0

− sin(2πγ−1f0t) cos(2πf0t)

π
√

2γ−1f0 t
: otherwise (2.19)

γ
4
=

f0

B
, γ ≥ 1 (2.20)

where γ is the bandwidth ratio that characterizes the test signal, f0 is the center
frequency, and B is the bandwidth. Defining the test signal in this way, the MF
performance of any signal with (near-) uniform spectrum is possible to character-
ize through the bandwidth ratio γ. The center frequency f0 is then just a scaling
in time. Consequently, the conclusions drawn using this test signal are widely
applicable in practice.

The test signal so(t) has an infinite support. It is, however, approximated by
a truncated replica. Using the sampling period Ts and the truncation time T0, the
signal template s used in the simulations below is defined as

s
4
=
(
so(T0) so(T0 − Ts) . . . so(−T0 + Ts) so(−T0)

)T
(2.21)

in accordance with (2.3) and (2.5). The truncation time T0 is set to

T0
4
=

b3γ + 1
2c + 1

2

2f0
(2.22)

where b·c means truncation to the nearest integer less than or equal to the argument.
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Assuming η(n) to be white noise with unit variance, the optimal impulse re-
sponse ho of the matched filter is defined by (2.12), with σ2 = 1. This impulse
response of the filter is equal to the signal template s, because the signal template
is symmetrical and has unit energy, see the spectrum of so(t) in Figure 2.1. This is
formalized by

σ2 = 1 (2.23)

ho =
s√
σ2sT s

= s . (2.24)

Throughout this section, simulations are carried out using the bandwidth ratios
γ = 1, 1.25, 1.5, 1.72, 2. These selected ratios span the most interesting part of the
possible bandwidth ratios, see Section 2.2.4. The value 1.72 is studied for reasons
that will become clear in Chapter 9.

The data used in the simulations are generated by adding a scaled signal tem-
plate µs to the noisy data set and the amplitude factor µ is set to yield different SNR
levels. As stated in Section 2.1.2, the arrival time na is unknown to the AMFD and
the positions of the peaks in the MF output are reported as estimates of na.

Because the noise may translate a peak originating from a signal and because
the noise itself may give rise to a peak, it is ambiguous whether a reported peak is
due to the presence of a signal or is derived from the noise. Without resolving this
ambiguity, the analysis of the simulation results is impossible to carry out because
we must be able to count the number of detections and the number of false alarms
in order to produce the statistics. Without knowing which of these two groups a
particular reported peak relates to, the analysis is impossible.

Analogously with the SMFD, we define a detection to be a reported peak at
n̂a = na when a signal is present and a false alarm to be a reported peak when no
signal is present. But, because the signal is longer than one sample, it is sensible to
also consider a report n̂a 6= na as a detection if a signal is present and the reported
peak is sufficiently close to the true arrival time. Thus, if a signal is present, there
is a point in time where a report changes from being considered as a false alarm to
being considered as a detection.

To find the dividing line and to dissolve the ambiguity above, two main as-
sumptions are made:

Assumption 2.7 Within a received data set containing a single signal, there exists
a single interval such that the characteristics of the data within the interval are in
compliance with hypothesis H1 (signal and noise) and the characteristics of the
data outside the interval are in compliance with hypothesis H0 (noise only).

Assumption 2.8 The detector reports are correctly classified into false alarms and
detections by some post-processing algorithm.
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Figure 2.2: The output from the matched filter for two SNR levels, 0 dB and 10 dB
(gray). The outputs when no noise is present are also shown (solid) as well as the
detection threshold used (dashed). To solve the ambiguity of a false alarm and a
faulty localized detection, a detection interval is introduced. Only reports within
the interval may be considered as detections. Any single report within the interval
is always considered as a detection. If there are several reports, the one closest to
na is considered as a detection.

Now, under Assumption 2.7 there exists a detection interval such that any sin-
gle report within the interval should be considered as a detection and all reports
outside the interval should be considered as false alarms.1

If several reports are made within the interval, however, there is a problem
of which report should be considered as the detection.2 Under Assumption 2.8,
it is most sensible to select the report closest to the true arrival time na as the
actual detection because this choice yields the smallest error in both amplitude and
estimated arrival time. This should be as close as possible to the net result of the
combined efforts of the detector and the assumed post-processing algorithm.

There are, however, two sides of the problem of selecting the detection inter-
val. On one hand, including parts where the true MF output, hT s(n), is below zero
makes no sense and would impair the performance measure because the signal’s
presence counteracts the detection in these regions. On the other hand, Assump-
tion 2.7 is violated by not including such regions because they are incompatible
with hypothesis H0 (noise only). The latter alternative is a safer choice since the
corresponding assumptions are slightly pessimistic rather than optimistic.3

1Due to symmetry reasons, such an interval must be centered around na.
2Because we are interested in the arrival time na and because each occurence of the signal,

naturally, arrives precisely one time, each signal occurence must correspond to at most one detection.
3It is worth noting that the additional positive peaks in the true MF output, see Figure 2.2, also

break Assumption 2.7 if the detection interval is narrowed to include the main peak only. For the
signals considered in the actual application in Chapter 9, however, these peaks do not exist and are
therefore not considered any further.
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The endpoints of the detection interval should thus be set to the first zero-
crossings counting from the true arrival time na, c. f. Figure 2.2. To simplify the
analysis, however, all simulations comparing different bandwidth ratios γ use the
same interval length of 13 samples (0.42 ms).

Unless stated otherwise, the simulations are performed with 1000 Monte Carlo
runs, with a detection threshold set to m0 = 1, and a white noise with unit vari-
ance. The sampling frequency is selected to 31.25 kHz, because that is the sam-
pling frequency set by the application in Chapter 9 where the AMFD is used. The
simulation parameters presented in this section are summarized in Table 2.1.

Table 2.1: MF parameters used in the simulations unless stated otherwise

Description Parameter Value

Number of runs N 1000

Bandwidth ratios {γ} {1, 1.25, 1.5, 1.72, 2}
Noise variance σ2 1

Detection threshold m0 1

Length of detection interval L [samples] 13

Sampling frequency fs [kHz] 31.25

Center frequency f0 [kHz] 1.15

2.2.2 Detection and false-alarm probability

The synchronous detector

Using (2.9) and (2.10), and assuming that the noise η(n) is Gaussian, the MF peak
output m(na) of the SMFD is a stochastic variable having a Gaussian distribution
with mean as described by (2.15) and (2.16), and with unit variance as described
by (2.18). The false-alarm probability PFA and the detection probability PD may
thus be calculated by means of the decision threshold m0 using the Gaussian dis-
tribution density function Φ(·), see Figure 2.3,

PFA = 1 − Φ(m0) (2.25)

PD = 1 − Φ
(
m0 −

√
SNRmf

)
. (2.26)
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Figure 2.3: This figure shows the probability density functions (pdf:s) of the two
hypotheses. Under the hypothesis H0, the data contains zero mean noise only
and the corresponding pdf is centered around zero. Under the hypothesis H1, the
expectation of the MF output is equal to

√
SNRmf and the pdf is centered around

that value. The false alarm probability PFA and the detection probability PD are
equal to the area under their respective pdf above the detection threshold m0, as
shown in the figure.

The false-alarm probabilityPFA depends on the detection thresholdm0 only, mean-
ing that the SMFD has a constant false-alarm rate (CFAR). This is a desirable de-
tector property in most applications.

The asynchronous detector

For the AMFD, the performance is difficult to analyze analytically. Instead, the
performance is analyzed through Monte Carlo simulations and compared to the
performance of the SMFD.

There is a major problem in doing this, however, and finding some “gen-
eral” performance valid for any detection threshold is in principle impossible with-
out simulating every detection threshold setting of interest. The problem is that
there may be several reports within the detection interval and, hence, the detection
threshold determines which report that is selected as the detection. The result is
that the estimated arrival time n̂a is detection threshold dependent and thus needs
to be known before any statistics on the AMFD output m(n̂a) may be computed.

Fortunately, multiple reports within the detection interval are rare (< 0.5%).
Therefore, the mean, the variance, and the pdf of the AMFD output m(n̂a) are
calculated for the maximum peak within the detection interval. This is, in essence,
equal to the ML approach discussed in Section 2.1.2. Because the multiple re-
ports are so rare, the ML statistics is almost identical to the statistics of the actual
detections for a particular detection threshold.

From Section 2.1.2 we expect an increased mean and decreased variance of the
AMFD outputm(n̂a) at low SNR levels compared to the SMFD outputm(na). As
the SNR increases, the arrival time estimate n̂a improves and the performance of
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Figure 2.4: The figure shows the mean and the variance of the AMFD (solid) and
the SMFD (dotted) output as a function of the SNR for different bandwidth ratios.
The AMFD data was estimated from 104 Monte Carlo runs.
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Figure 2.5: The diagrams show the estimated probability density functions of the
AMFD (solid) output for different bandwidth ratios and different SNR levels. The
selected SNR levels are no signal (−∞ dB), 5 dB, and 15 dB. The theoretical
values of the SMFD are shown (dotted) as well as a Gaussian pdf with mean and
variance corresponding to the AMFD output (dashed).

the AMFD should approach the performance of the SMFD.
The results in Figure 2.4 from 104 Monte Carlo runs clearly show this expected

behavior. At low SNR levels, the mean of m(n̂a) is about one for the AMFD
compared to zero for the SMFD. The variance ofm(n̂a) is about 0.6 for the AMFD
compared to 1 for the SMFD. As the SNR increases, the differences between the
AMFD and the SMFD decreases asymptotically to zero.

In Figure 2.5 the estimated pdf of the AMFD output m(n̂a) is shown. As ex-
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pected, the pdf ofm(n̂a) differs from the pdf ofm(na) at low SNR levels. The fig-
ure indicates, however, that despite the AMFD output not being Gaussian, the pdf
of m(n̂a) may be approximated by a Gaussian pdf if the actual mean and variance
are taken into account. At high SNR levels it coincides with the N (

√
SNRmf , 1)

pdf of the SMFD.
An approximate pdf of the AMFD output m(n̂a), using estimated values of its

mean (Ê(m(n̂a))) and variance (V̂ (m(n̂a))), may thus be defined as

p̃m(n̂a)(m,κ)
4
=

1√
V̂ (m(n̂a))

pN


m− Ê(m(n̂a))√

V̂ (m(n̂a))



∣∣∣∣∣∣
SNRmf=κ

(2.27)

where pN (·) is the pdf of Gaussian N (0, 1) distribution, i.e. the same as the SMFD
output when no signal is present.

Having the approximate pdf ofm(n̂a), the approximate false-alarm probability
and detection probability of the AMFD may be defined. Denoting these probabili-
ties by P̃FA and P̃D, respectively, we obtain

P̃FA(m0) =

∫ ∞

m0

p̃m(n̂a)(m, 0)dm = 1 −
∫ m0

−∞
p̃m(n̂a)(m, 0)dm

= 1 − Φ


m0 − Ê(m(n̂a))√

V̂ (m(n̂a))



∣∣∣∣∣∣
SNRmf=0

(2.28)

P̃D(m0, κ) =

∫ ∞

m0

p̃m(n̂a)(m,κ)dm = 1 −
∫ m0

−∞
p̃m(n̂a)(m,κ)dm

= 1 − Φ


m0 − Ê(m(n̂a))√

V̂ (m(n̂a))



∣∣∣∣∣∣
SNRmf=κ

(2.29)

where the dependence on the the detection threshold m0 and the SNRmf is explic-
itly indicated. Note that the AMFD is a CFAR detector like the SMFD.

Figure 2.6 shows that, while the AMFD output is not exactly Gaussian, the
expressions in (2.28) and (2.29) are good approximations to the actual false-alarm
probability and detection probability. The figure also shows that the detection prob-
ability of the AMFD coincide with the corresponding probability of the SMFD at
high SNR levels.

In the applications considered in this thesis, a key aspect of the detector is its
false-alarm probability. Therefore, in order to compare the performance of the two
detectors, it seems reasonable that the threshold used in the AMFD should yield
the same false-alarm probability as the threshold used in the SMFD.
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Figure 2.6: Top: The diagrams show the estimated false-alarm probability of the
AMFD (solid) as a function of the threshold value. The theoretical false-alarm
probability of the SMFD are shown (dotted) as well as the approximate false-
alarm probability P̃FA of the AMFD (dashed) for the SNR levels -20 dB, 0 dB,
and 10 dB, respectively.
Bottom: The diagrams show the estimated detection probability of the AMFD
(solid) as a function of the threshold value subtracted with the

√
(SNRmf ), see

(2.26). The theoretical detection probability of the SMFD is shown (dotted) as
well as the approximate detection probability P̃D of the AMFD (dashed).

Combining (2.25) and (2.28), we see that this is accomplished by defining the
detection threshold m̃0 of the AMFD as a linear transformation of the detection
threshold m0 of the SMFD according to

m̃0
4
= σmm0 + m̃ (2.30)

where m̃ and σm are the mean and standard deviation of m(n̂a) when no signal is
present. The mean and the variance for different bandwidth ratios γ are shown in
Figure 2.7.

In Figure 2.8 and Figure 2.9 the performance of the AMFD is compared to the
SMFD. Figure 2.8 shows the estimated receiver operating characteristics (ROC)
curves of the AMFD for different bandwidth ratios and the SNR levels -20 dB,
0 dB, and 10 dB, respectively. As can be seen in the figure, the AMFD performs in
general well but has a slight performance loss compared to the SMFD, due to the
unknown arrival time na.

The diagrams in Figure 2.9 compare the detection probability of the AMFD
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Figure 2.7: The figure shows the mean (+) and the variance (×) of m(n̂a) when
no signal is present as a function of the bandwidth ratio γ.
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Figure 2.8: The estimated receiver operating characteristics (ROC) curves of the
AMFD are shown (solid) for different bandwidth ratios and the SNR levels -20 dB,
0 dB, and 10 dB. The theoretical ROC curves of the SMFD are also shown (dotted)
as well as the approximate ROC curves of the AMFD (dashed).

with the SMFD as a function of the SNR for different false-alarm probabilities and
bandwidth ratios. The threshold m0 of the SMFD was set to achieve the false-
alarm probabilities 0.2, 0.05, and 0.001, corresponding to m0 = 0.84, 1.6, 3.1,
respectively. The detection threshold transformation (2.30) is used to yield equal
false-alarm probabilities and we see that the performance loss is limited to less than
3 dB. At higher thresholds and higher SNR levels, the results suggests that the two
detectors are comparable in performance.

A note of precaution is, however, necessary here. At closer inspection, the de-
tection threshold transformation (2.30) results in an AMFD threshold m̃0 less than
the SMFD threshold m0 for large threshold values. This suggests that a perfor-
mance gain is expected when m0 >

m̃
1−σm

which is about 5 for the parameters m̃
and σm considered here. This is of course not possible and the detection threshold
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Figure 2.9: The diagrams show the estimated detection probability of the AMFD
(solid) as a function of the SNR for different false-alarm probabilities and band-
width ratios. The theoretical values of the SMFD are shown (dotted). The thresh-
oldm0 of the SMFD was set to achieve the false-alarm probabilities 0.2, 0.05, and
0.001, corresponding to m0 = 0.84, 1.6, 3.1, respectively, whereas the threshold
m̃0 of the AMFD was set by the transformation (2.30) to yield equal false-alarm
probabilities.

transformation in (2.30) should be used with this in mind. The error stems from the
approximation in (2.28) that over-estimates the false-alarm probability slightly, see
Figure 2.6. The transformation in (2.30) then yields a false-alarm probability of
the AMFD that is less than the false-alarm probability of the SMFD and the result
is a faulty increase in the detection probability of the AMFD. The correct trans-
formation yields m̃0 > m0 ∀ m0 with an asymptotically decreasing difference for
increasing m0.

Hence, the performance diagrams in Figure 2.9 may be misleading, due to the
faulty transformation, for the high threshold case where the AMFD seem to be
comparable with the SMFD in performance. An alternative would be to set the
threshold m̃0 so that the estimated false-alarm probability is equal to the false-
alarm probability of the SMFD. This would, however, require a lot more Monte
Carlo runs than the 1000 runs used here. Since the gain of acquiring this informa-
tion is more academical than useful, it has not been pursued further. In any case,
the results indicate that the performance loss is limited to less than 3 dB which is
assuring.

Because the AMFD is applied to an “on-going” signal, there is a parameter
of more interest than the false-alarm probability, namely the false-alarm intensity.
This entity represents the number of false alarms per unit time and is valuable for
the post-processing algorithm mentioned in Assumption 2.8. In Chapter 9, for ex-
ample, it is used in a Bayesian approach to this false-alarm/detection classification
problem.

From 106 Monte Carlo runs, Figure 2.10 shows the estimated false-alarm in-
tensity β when using the detection thresholdm0 = −∞ corresponding to the false-
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Figure 2.10: The figure shows the estimated false-alarm intensity as a function of
the bandwidth ratio γ based on 106 Monte Carlo runs using the detection threshold
m0 = −∞. This threshold yields the maximum false-alarm intensity because
P̃FA = 1.

alarm probability P̃FA = 1 which yields the maximum false-alarm intensity. As
the figure shows, β ranges from 1.3 to 1.8 in this case, which means that, on aver-
age, there is about one to two false alarm every millisecond. To find the false-alarm
intensity for some other detection threshold, the intensity shown in Figure 2.10 is
multiplied with the false-alarm probability P̃FA because the false-alarm intensity
is directly proportional to the false-alarm probability.

2.2.3 Accuracy

In most applications, the accuracy of the detector is important. In this thesis the
variance of the reported arrival time n̂a is considered. Clearly, the variance of
the synchronous MF detector is zero. The variance of the asynchronous detector
is found by Monte Carlo simulations due to the difficulties in finding analytical
expressions for this detector.

Estimating the variance of the arrival time n̂a from the MF output directly
would yield poor estimates, however, because the selected sampling period is long
compared to the variance of the asynchronous detector. To obtain a better estimate,
the MF output is oversampled ten times through interpolation prior to the detection
and the arrival time variance estimation.

In Figure 2.11 the variance of the asynchronous detector using the five different
bandwidth ratios is shown. As the figure shows, the variance is small for high SNRs
and increases when the SNR decreases. There is no noticeable difference between
the different bandwidth ratios. As expected, the variance approaches the variance
of a uniform distribution over the detection interval when the SNR is so low that
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Figure 2.11: The figure shows the estimated variance (solid) of the arrival times
for the five different bandwidth ratios whith the MF output oversampled ten times
prior to the detection. For decreasing SNR levels, the variance increases asymp-
totically towards the variance of a uniform distribution over the detection interval
(dashed). For comparison, the squared (original) sample period (1/f 2

s ) is shown
(dotted). See also Figure 2.2.

no actual detections can be made. Instead, the reports considered as detections are
false alarms that, of course, are uniformily distributed over the interval.

Remark Without interpolating the MF output, as done in this simulation, the vari-
ance of the AMFD is always larger than 1

12f2
s

if the input signals are asyn-
chronously sampled from continuous time.

2.2.4 Resolution

When deriving the MF detector, it was assumed that at most one signal was present
in the recorded data. In particular, it was assumed that no signals were overlapping.
For the applications considered in this thesis, no such guarantee exists, however,
and it is important to analyze the detector’s resolution capabilities, i.e. how much
must two different signals be separated in time in order for the detector to report
two detections? This question will be answered below.

Again, an analytical analysis is difficult and the resolution capabilities have
been obtained through Monte Carlo simulations. It will be shown, however, that
Rayleigh’s resolution criterion may also be used in an appropriate manner.

The simulation setup was almost identical to the one described in Section 2.2.1.
The only differences were that two signals were added to the data set. Moreover, if



2.2. Performance 49

γ = 1 γ = 1.5 γ = 2

0 0.5 1
0

0.5

1

Time difference [ms]

D
et

ec
tio

n 
pr

ob
ab

ili
ty

0 0.5 1
0

0.5

1

Time difference [ms]

D
et

ec
tio

n 
pr

ob
ab

ili
ty

0 0.5 1
0

0.5

1

Time difference [ms]

D
et

ec
tio

n 
pr

ob
ab

ili
ty

0 0.5 1
0

0.5

1

Time difference [ms]

D
et

ec
tio

n 
pr

ob
ab

ili
ty

0 0.5 1
0

0.5

1

Time difference [ms]

D
et

ec
tio

n 
pr

ob
ab

ili
ty

0 0.5 1
0

0.5

1

Time difference [ms]

D
et

ec
tio

n 
pr

ob
ab

ili
ty

Figure 2.12: The diagrams show the estimated probabilities of detecting one signal
(top) and two identical signals (bottom) as a function of the time separation at
different SNRs, -20 dB (dotted), 0 dB (dash dotted), 10 dB (dashed), and 20 dB
(solid).

both signals were competing for a single detection, at small time differences where
the detection intervals overlap, the detection was assigned to the first signal. This
way, the detection probability of the first signal is a measure of the influence (if any)
that overlapping signals may have on the overall detection probability as analyzed
in Section 2.2.2. The detection probability of the second signal is a measure of the
probability of detecting both signals and, thus, a direct measure of the resolution
capability.

Figure 2.12 shows the probability of detecting one and two signals at different
SNRs. As expected, the probability of detecting two signals decreases to zero for
small time differences. The probability of detecting one signal increases instead,
because the signals add and interfere constructively. Surprisingly, there is a dip in
the detection probability between 0.2 ms and 0.4 ms. The reason is that the two
signals interfere destructively with one another in this interval. The figure suggests
that the resolution of the AMFD is about 0.3-0.4 ms.

Based on the results in Figure 2.12 and practical experience, we have found
that the resolution capability of the AMFD may successfully be described by the
formula

∆res
4
= arg

{
P̂

(2)
FA (∆ta)

∣∣∣
SNR=20 dB

= 0.85
}

(2.31)

where ∆ta = ∆na/fs is the time difference and P̂ (2)
FA (∆ta) is the estimated false-



50 Chapter 2. Matched filter detection

1 1.2 1.4 1.6 1.8 2
0.3

0.32

0.34

0.36

0.38

0.4

0.42

γ

∆ re
s [m

s]

Figure 2.13: The figure shows the estimated resolution dependency of the band-
width ratio γ. Over the interval, the resoloution ranges from 0.3 ms to 0.4 ms
(10-13 samples).

alarm probability of the second signal using the sigmoid model

P̂
(2)
FA (∆ta)

4
=

1

1 + e−C1∆ta+C0
(2.32)

where C0 and C1 are adjusted to the measured curves for 20 dB SNR using the
simplex method.

In Figure 2.13 the resulting resolution estimates of the AMFD are shown for
the different bandwidth ratios γ. As the figure shows, the resolution ranges from
0.3 ms to 0.4 ms (10-13 samples).

Using Rayleigh’s resolution criterion, instead, the resolution of the asynchron-
ous detector may be calculated analytically.4 Figure 2.14 shows the Rayleigh res-
olution as a function of the bandwidth ratio together with the resolution definition
in (2.31). As the figure shows, there is a good agreement between the two different
resolution criterias and the Rayleigh resolution may indeed be used instead.

Figure 2.14 also shows the sidelobe rejection, both the primary and the global,
because it influences the potential problem of detecting the same signal several
times, one time for each sidelobe. The primary sidelobe rejection is defined as
the relative amplitude difference of the main peak and the first sidelobe, whereas
the global sidelobe rejection is defined as the relative amplitude difference of the
main peak and the sidelobe with the highest amplitude. As shown in the figure,
the global sidelobe rejection is close to unity for the bandwidth ratios studied here
which suggests that multiple detections are rare in these cases.

4The resolution according to Rayleigh is the time difference of the main peak and the first mini-
mum of the MF output.
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Figure 2.14: The figure shows the product 2f0∆tR (solid) where ∆tR is the
Rayleigh resolution, the primary sidelobe rejection (dashed), and the global side-
lobe rejection (dash-dotted). Also included is the estimated resolution based on
Monte Carlo simulations yielding a detection probability PD = 0.85 (+).

2.3 Concluding remarks

In this chapter, both the synchronous and the asynchronous matched filter detectors
were derived and analyzed. Despite the small difference between the SMFD and
the AMFD, an analytical analysis of the AMFD was not tractable due to the nonlin-
ear arrival time estimator. Instead Monte Carlo simulations were used to evaluate
the performance of the AMFD and comparing it to the SMFD.

As shown above, the performance of the AMFD is similar to the SMFD with
at most a 3 dB performance loss in detection probability.

The simulation methods presented here provides a framework for assessing
the performance criterias such as false-alarm intensity, arrival-time accuracy, and
detection resolution in the application in Chapter 9. The results provided by the
simulations in this chapter are promising and applying the AMFD to a real scenario
seem feasible.
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CHAPTER 3

Kalman filtering and prediction

PREDICTING noisy signals generated by a dynamic system is a task found
in a large set of practical applications. There are different ways of solving

this problem and in this chapter we look at the well-known Kalman filter approach
where the predictor is implemented simply as a recursive, linear filter with time-
varying gain.

The Kalman filter [77] [52] [46] has had an enormous act on signal processing
and technological development for at least two major reasons. First, a distinctive
feature of Kalman filters is their state-space formulation and recursive implemen-
tation. This reduces the storage requirements and improves the computational effi-
ciency because only the last estimate is needed at each step of the filtering process.

Second, the Kalman filter is the linear filter that produces the minimum mean
squared error (MMSE) estimate given all past data. If the system that generates the
measurement signal is linear and the noise is Gaussian, then the Kalman filter is
the optimal MMSE estimator among all filters; both linear and nonlinear.

The Kalman filter solves problems of smoothing, filtering, and prediction in
a simple, but stringent, form. In the Kalman filter realm, these estimates are just
special cases of the general solution. If the process under study is stationary then
the Kalman filter, with time-varying gain, converges towards an ordinary constant
filter that is easy to implement.

The design of the Kalman filter algorithm is based on a model with two equa-
tions: the process equation and the measurement equation. The former describes
the dynamics of and the inputs to the process (or system) that we are interested in
and the latter describes the way measurements are collected from the process along
with possible inputs. Both these equations/models may be time varying.

53
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Often, the inputs in these models are signals regarded as noise with known
second order properties; process noise and measurement noise, respectively. The
Kalman filter algorithm is determined by the possibly time-varying covariance ma-
trices of these noises and the dynamics of the linear state space model.

Before the Kalman algorithm can be applied to data, the initial values of the
state estimates need to be set. This issue is often omitted in the literature by just
setting the intial values to their expectations since this yields unbiased estimates.
In a practical situation, this method may be limited by either unknown expecta-
tions which forces the designer to preset the initial values to some ad hoc value
that is “suitable”, or initial values that are very uncertain which yield a large initial
variance. Either of these two scenarios may result in non-MMSE and even biased
estimates. Often, however, this aspect is neglected because the effects of any ini-
tialization errors decay exponentially with time for detectable systems. Clearly,
this approach does not work very well in applications where the initial estimates
must be as correct as possible.

One such application is target tracking, see Chapter 9, where correct initial-
ization is of vital importance to the performance. If the initial values are very
uncertain or even unknown, the best performance is attained by using a number of
the first measurements to find an MMSE state estimate as the starting point for the
Kalman filter.

Another important property of the Kalman filter in this regard is its consis-
tency [12]. In demanding applications where optimal performance is required, the
consistency of the filter is crucial.

In this chapter, prediction through Kalman filtering is presented. The Kalman
filter algorithm for time-invariant models is presented as well as how to derive a
discrete-time linear stochastic model from a continuous-time model. Discussion
of any application specific issues is deferred to Part II. The model used in the
numerical example section, however, is similar to the one used in Chapter 9 because
this model is both simple to understand and complex enough to show the main ideas
of this chapter. We show that it is fairly simple to properly initiate the Kalman filter
and to assure its consistency.

3.1 State space models

The mathematical formulation of Kalman filters are in state space form. Us-
ing these concepts, a recursive implementation suitable for digital computers is
straight-forward to derive.

Because many practical applications involve a continuous-time system, we re-
capitulate the derivation of the discrete-time dynamic model needed by the Kalman
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algorithm from a continuous-time model. In cases where the dynamics actually
takes place in discrete time, this step is omitted and the discrete-time process model
is formulated directly.

Further, we assume a true discrete-time measurement acquisition system be-
cause this is often the case in practical applications. If necessary, the process-model
derivation is simple to generalize to continuous-time measurement models.

3.1.1 The continuous-time process equation

A linear time-invariant system is assumed to be described in state space form as

dxc(t) = Axc(t) dt+ Gdw(t) (3.1)

where xc(t) is a nx-dimensional continuous-time state vector consisting of the

states x(c)
1 (t), x

(c)
2 (t), . . . , x

(c)
nx (t). The nw-dimensional entity dw(t) is the Wiener

increment [8] of an nw-dimensional Wiener process w(t).1 The nx|nx-dimensional
matrix A is the state transition matrix specifying the dynamics of the system. The
nx|nw-dimensional gain matrix G reflects the amount of influence the noise has
on each state.

The incremental covariance matrix Λ(t) dt of the Wiener increment dw(t) is
defined as

Λ(t) dt
4
= E(dw(t)dwT (t)) . (3.2)

3.1.2 The discrete-time process equation

Often, signal processing is performed on a digital computer in which case discrete-
time models must be used. By first solving the stochastic differential equation (3.1)
of the continuous-time process model and then discretizing the solution, we obtain
the discrete-time process model.

Solving (3.1) yields [9]

dxc(t) = Axc(t) dt+ Gdw(t)

e−At (dxc(t) − Axc(t) dt) = e−AtGdw(t)

d
(
e−Atxc(t)

)
= e−AtGdw(t)

e−Atxc(t) = C +

∫ t

e−AτGdw(τ)

xc(t) = CeAt +

∫ t

eA(t−τ)Gdw(τ) . (3.3)

1The stochastic differential equation (3.1) may be interpreted (with some care) as ẋc(t) =
Axc(t) + Ge(t), where e(t) is a nw-dimensional continuous-time white noise process.
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Solving for the constant C using an arbitrary initial time t0 we obtain

xc(t) = eA(t−t0)xc(t0) +

∫ t

t0

eA(t−τ)Gdw(τ) (3.4)

= eA(t−t0)xc(t0) +

∫ t−t0

0
eA(t−t0−τ)Gdw(t0 + τ) . (3.5)

Using the sampling period T and selecting t0 = 0, the state at time (k+1)T is

xc((k + 1)T ) = eA(k+1)Txc(0) +

∫ (k+1)T

0
eA((k+1)T−τ)Gdw(τ) (3.6)

= eAT eAkTxc(0) + eAT

∫ kT

0
eA(kT−τ)Gdw(τ)

+

∫ kT+T

kT
eA(kT+T−τ)Gdw(τ)

= eATxc(kT ) +

∫ T

0
eA(T−τ)Gdw(kT + τ) (3.7)

which is a complete discrete-time representation of the continuous-time differential
equation (3.1). To simplify the notation, we then write the discrete-time process
model at sample k as

x(k + 1) = Fx(k) + v1(k) (3.8)

where

x(k)
4
= xc(kT ) (3.9)

F
4
= eAT (3.10)

v1(k)
4
=

∫ T

0
eA(T−τ)Gdw(kT + τ) (3.11)

Q1(k)
4
= E(v1(k)v

T
1 (k)) . (3.12)

Here, the transition matrix F describes the discrete-time system dynamics2 and the
nx-dimensional vector v1(k) represents process noise3 modeled as independent
zero-mean, white-noise processes with covariance matrix Q1(k).

2The matrix eAT may be derived via, for example, the series expansion eAT = I + AT +
1

2!
(AT )2 + . . . . See [9] for details.

3In equation (3.11), the entity dw(kT + τ) may be interpreted as e(kT + τ)dτ , where e(t) is a
nx-dimensional continuous-time white noise process.
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3.1.3 The discrete-time measurement equation

The measurement model describes how the measurements are collected. We as-
sume that ny noisy linear combinations of x(k) are measurable at each discrete
time. Thus, the measurement is here modeled as

y(k)
4
= Hx(k) + v2(k) (3.13)

where y(k) is a ny-dimensional measurement vector, H is a ny|nx-dimensional
mixing matrix that describes the amount each state in x(k) influences each ele-
ment of the measurement vector. The ny-dimensional vector v2(k) is the mea-
surement noise modeled as independent zero-mean white-noise processes with a
known ny|ny covariance matrix

Q2(k)
4
= E(v2(k)v

T
2 (k)) . (3.14)

3.2 The Kalman filter

Here, the Kalman algorithm for models of type (3.8)-(3.14) is presented as well as
some comments on how to initiate it and evaluate its consistency with the data. It
is in the following assumed that the noises v1(k) and v2(l) are statistically inde-
pendent except for k = l where their mutual covariance matrix is

Q12(k)
4
= E(v1(k)v

T
2 (k)) . (3.15)

3.2.1 Kalman filter algorithm

Assuming that the state space model (3.8)-(3.14) is an accurate description of the
true system, the Kalman filter is a linear estimator that provides the MMSE filtered
estimate x̂(k|k) and the MMSE one-step prediction x̂(k + 1|k), c. f. [4] [46],

ỹ(k) = y(k) − Hx̂(k|k − 1) (3.16)

S(k) = HP(k|k − 1)HT + Q2(k) (3.17)

Kf (k) = P(k|k − 1)HTS−1(k) (3.18)

x̂(k|k) = x̂(k|k − 1) + Kf (k)ỹ(k) (3.19)

x̂(k + 1|k) = Fx̂(k|k) + Q12(k)Q
−1
2 (k)(y(k) − Hx̂(k|k)) (3.20)

P(k|k) = (I − Kf (k)H)P(k|k − 1) (3.21)

P(k + 1|k) = (F − Q12(k)Q
−1
2 (k)H)P(k|k)(F − Q12(k)Q

−1
2 (k)H)T

+ Q1(k) − Q12(k)Q
−1
2 (k)QT

12(k) (3.22)
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where I is the nx|nx identity matrix, ỹ(k) is the measurement prediction error,
called the innovation, and Kf (k) is the Kalman filter gain. The nx|nx matrix
P(k|k), P(k+1|k), and the ny|ny matrix S(k) are the covariance matrices for the
state filter error, the one-step state prediction error, and the measurement prediction
error, respectively. They are defined as

P(k + i|k) 4
= E(x̃(k + i|k)x̃T (k + i|k)), i = 0, 1 (3.23)

S(k)
4
= E(ỹ(k)ỹT (k)) . (3.24)

where

x̃(k + i|k) 4
= x(k + i) − x̂(k + i|k) . (3.25)

Remark If Q12(k) = 0, the time-update equations (3.20) and (3.22) are simpli-
fied considerably and it is then not required that Q−1

2 (k) exists. If, however,
Q−1

2 (k) does not exist, then HP(k|k − 1)HT must not be zero for S−1(k)
to exist.

Remark If Q12(k) 6= 0 and Q−1
2 (k) does not exist, only the filtered estimate

x̂(k|k) and its covariance matrix P(k|k) become non-computable. By rewrit-
ing the recursions and formulate them using the one-step prediction x̂(k +
1|k) and its covariance matrix P(k + 1|k) only, these entities are still com-
putable.

Square-root Kalman filtering algorithms

The basic form of the Kalman filter algorithm as presented above suffers from a
numerical instability problem. The recursive formula in (3.21) may result in the
filter covariance matrix P(k|k) not being nonnegative definite, as required. To
overcome these numerical problems, several modifications have been presented
in the literature [96]. One method is the so-called square-root filtering method
in which the square root of the covariance matrix P1/2(k|k) is propagated instead.
The actual covariance matrix is then calculated at each filtering step from the square
root with

P(k|k) 4
= P1/2(k|k)PT/2(k|k) (3.26)

which is always nonnegative definite.
Another advantage of this method is that the conditioning number of the ma-

trix to be propagated is improved compared to the original algorithm, see [46] for
details.
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3.2.2 Initialization

Before the use of the recursion (3.16)-(3.22), the initial state estimate and its covari-
ance matrix need to be set properly to achieve optimal performance. As mentioned
above, there are three alternatives for this. The initial values are either:

• estimated from the data,

• set to their expectations with a possibly infinite covariance matrix, or

• set to some “safe” ad hoc values.

In demanding applications in practice, the first method is preferred unless the ex-
pectations are accurately known.

An elegant combination of the two first alternatives is presented in [6] where
a modified Kalman filter is introduced that handles both finite and infinite initial
covariance matrices as well as combinations of these. This filter may be viewed as
being an augmented Kalman filter where the augmented part considers the initially
infinite covariance matrix estimates. The most interesting property of this filter is
that it reduces to the ordinary Kalman filter when enough data has been collected;
the augmented part of the filter is in effect during the intitial transient phase only.

One drawback of this elegant approach is the elaborate calculations that are
difficult to justify for small system models with a short initial transition phase. For
system models with scalar measurements, however, the modified Kalman filter is
only slightly more complex than the ordinary one [54].

In cases with multi-dimensional measurements, unknown expectations, and
a short initial transition phase, a direct estimation from data may be preferable.
Given a particular “starting” time k0 and the first l samples of the measurements
y(k), it is possible to find an MMSE estimate x̂(k0 + l − 1|k0 + l − 1) and its
covariance matrix P(k0 + l−1|k0 + l−1) if l ≥ l0 where l0 is the number of mea-
surements required for the system to be observable from y(k). See Appendix 3.A
for details.

3.2.3 Consistency

If the assumed model is suitably close to the real system, a properly tuned Kalman
filter produces (close to) consistent estimates. Checking the consistency during the
tuning is often advisable because it may provide additional information valuable to
the tuning process [12].

For the Kalman filter to provide consistent estimates, the following conditions
have to be fulfilled:

1. The filter is unbiased, i.e. the state errors are zero mean.
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2. The covariance matrices calculated by the filter are equal to the covariance
matrices of the actual state and measurement errors.

3. The innovations are zero mean and white.

4. The initial state and its covariance matrix are set to their expectations or
unbiased estimates of these entities.

In [12], the following tests are based on N Monte Carlo simulations and used
to test the consistency of a Kalman filter applied to measurements produced by a
model:

1. Normalized (state) estimation error (NEE) – Consistency of the filtered
state and its covariance matrix may be tested using

ε̄x(k)
4
=

1

N

N∑

i=1

x̃T
i (k|k)(diag Pi(k|k))−1/2 (3.27)

which is N (0, 1√
N

) distributed under the hypothesis that condition 1 and 2
are true.

2. Normalized (state) estimation error squared (NEES) – Another test of
the consistency of the filtered state and its covariance matrix is

ε̄xx(k)
4
=

1

N

N∑

i=1

x̃T
i (k|k)P−1

i (k|k)x̃i(k|k) (3.28)

where Nε̄xx(k) is χ2 distributed with Nnx degrees of freedom under the
hypothesis that condition 1 and 2 are true.

3. Normalized innovation squared (NIS) – Consistency of the innovations
and their covariance matrix may be tested using

ε̄yy(k)
4
=

1

N

N∑

i=1

ỹT
i (k)S−1

i (k)ỹi(k) (3.29)

where Nε̄yy(k) is χ2 distributed with Nny degrees of freedom under the
hypothesis that condition 1 and 2 are true.

4. Innovations autocorrelation (IAC) – Whiteness of the innovations is tested
using

ρ̄(k, j)
4
=

N∑

i=1

ỹT
i (k)ỹi(j)

[
N∑

i=1

ỹT
i (k)ỹi(k)

N∑

i=1

ỹT
i (j)ỹi(j)

]−1/2

(3.30)
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which may, for N large enough, be approximated with a normal distribution
with zero mean under the hypothesis that condition 3 is true.

There are cases where Monte Carlo simulations are not possible to use. In
[12], a real time consistency test is constructed for the innovations by using their
assumed ergodicity and taking the time averages instead of the ensemble averages.

The consistency tests presented above present a challenge when applying them
to an actual application. One may easily end up in a catch-22 scenario where a
hypothesized system model needs to be correct in order to test whether it is (suffi-
ciently) correct for the corresponding Kalman filter to provide consistent estimates.
Often, however, a (reasonably) correct dynamic model is available, but it may be
nonlinear, or of very large dimension and complicated. In these cases, there may
be a desire to use a simpler model in the actual Kalman filter implementation. The
consistency tests are then important tools when evaluating a filter design based on
the approximate system model. Using the consistency tests, a stringent evalua-
tion of the validity of the approximate system model for designing a Kalman filter
estimator is possible.

The basic requirement for performing the consistency tests is that the actual
true states are available. This means that even if the system model is totally un-
known, the consistency tests may be used if there are alternative ways to acquire
this information. To improve the statistics, it is preferable to be able to repeat the
scenario a number of times. A particular scenario may be a device that, due to
economical constraints for example, uses noisy sensors to measure a subset of the
available states. During the development in the lab, however, the additional cost to
measure all states using accurate sensors is often minimal. Then, the consistency
tests – where the high-quality measurements are used as the true states – may be
applied as described above to achieve the “optimal” filter design.

3.3 A numerical example

This section illustrates the modeling, initiation, and consistency checks outlined
above. The model used is very similar to the one used in Chapter 9 but is sim-
plified somewhat and uses other parameter values that are better suited for this
presentation.

3.3.1 Example model

Assume a simple combined system where the first subsystem, of second order, is
a first order lowpass filter applied to a Wiener process and the second subsystem,
of first order, represents a separate Wiener process. Hence, using the state space
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formalism c. f. Section 3.1 and (3.1), we assume in this example a state transition
matrix A and gain matrix G defined as

A =




0 1 0
0 −α 0
0 0 0


 (3.31)

G =




0 0
1 0
0 1


 (3.32)

where α determines the time constant of the lowpass filter in the first subsystem.
The incremental covariance matrix Λ(t) dt of the Wiener increment vector

dw(t) is assumed to be time-invariant and diagonal as described as

Λ(t) dt
4
= E(dw(t)dwT (t)) =

(
σ2

λ1
0

0 σ2
λ2

)
dt . (3.33)

Sampling this continuous-time process model with the sampling period T , c. f.
Section 3.1.2, the discrete-time process model (3.8) is obtained, c. f. Appendix 3.B
and Appendix 3.C, as

F =




1 α−1(1 − e−αT ) 0
0 e−αT 0
0 0 1


 (3.34)

Q1 = Q1(k) =




q
(1)
11 q

(1)
12 0

q
(1)
21 q

(1)
22 0

0 0 q
(1)
33


Σ0 . (3.35)

where the elements of Q1 are specified by (3.87)-(3.92).
Finally, a simple measurement model is assumed where the first state of each

submodel is measured in discrete time with additive noise having a constant co-
variance matrix. The process noise and the measurement noise are assumed inde-
pendent. This is summarized by

H =

(
1 0 0
0 0 1

)
(3.36)

Q2 = Q2(k) =

(
q
(2)
11 0

0 q
(2)
22

)
(3.37)

Q12 = Q12(k) =




0 0
0 0
0 0


 . (3.38)
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Moreover, we assume that the initial states x(k0 − 1) are completely unknown
or, equivalently, that the eigenvalues of the initial covariance matrix P(k0 − 1) are
infinite.

Unless stated otherwise, the simulations were performed with 1000 Monte
Carlo runs, with a sampling period of 4 s. The other model parameters used in
this section are summarized in Table 3.1.

Table 3.1: Parameters used in the simulations unless stated otherwise

Description Parameter Value

Number of runs N 1000

Sample period T [s] 4

Integration constant (true) α0 [s−1] 0.1

Integration constant (mod) α [s−1] 1.5α0

Process noise variance σ2
λ1

0.001

σ2
λ2

0.1

Measurement noise variance q
(2)
11 0.5

q
(2)
22 1

Significance level 1 − ϑ 0.95

Initial state, mean E(x1(k0)) 30

E(x2(k0)) 0

E(x3(k0)) 8

Initial state, variance V (x1(k0)) 0.01

V (x2(k0)) 10−6

V (x3(k0)) 9

3.3.2 Initialization

Before the Kalman algorithm may be applied to the example model given above,
the initial states must be set to their appropriate values using one of the techniques
described in Section 3.2.2. For the model considered here, with an invertible state
transition matrix F, the initialization is particularly simple and may be estimated
directly from data.



64 Chapter 3. Kalman filtering and prediction

In Appendix 3.D, the MMSE estimate of the state vector x̂(k0 + 1|k0 + 1)
is derived. Using this estimate and the true model above, the results presented in
Table 3.2 are obtained. As shown in the table, the estimate yield the expected MSE.

Table 3.2: MSE of the initial MMSE estimate of the state vector with 95% confi-
dence intervals

Entity True Value MMSE Estimate

x̂1(k0 + 1|k0 + 1) 0.500 0.485 [0.457, 0.545]

x̂2(k0 + 1|k0 + 1) 0.0425 0.0411 [0.0389, 0.0464]

x̂3(k0 + 1|k0 + 1) 0.583 0.581 [0.533, 0.636]

x̂1(k0 + 2|k0 + 1) 1.65 1.60 [1.51, 1.80]

x̂2(k0 + 2|k0 + 1) 0.0219 0.0218 [0.0200, 0.0238]

x̂3(k0 + 2|k0 + 1) 0.983 1.00 [0.899, 1.07]

3.3.3 Consistency

Now, having initialized the Kalman filter properly, it is important to check that it is
consistent with the data, i.e., that the innovations are zero mean and white, that the
filtered estimates are unbiased, and that the errors in the filtered estimates actually
correspond to the calculated covariance matrices, see Section 3.2.3 for details. Note
that the filter must be properly initialized in order to provide consistent estimations.

With the model described above, simulation with 1000 Monte Carlo runs were
performed with MMSE initialization where an example realization is shown in
Figure 3.1. Despite the α parameter being wrong, see Table 3.1, it is difficult to see
that the performance of the Kalman filter is suboptimal.

Using the consistency tests described in Section 3.2.3, however, the suboptimal
performance is easily recognized as shown in Figure 3.2. In the figure the tests are
presented with a (95%) confidence interval.

Figure 3.3 shows the prediction MSE as well as the initial state estimate MSE
from the two simulations. As shown, the prediction MSE of the first subsystem is
first large because of the difficulty in estimating the derivate in the first subsystem
correctly, but decreases quickly to a low level. Surprisingly, the initial prediction
MSE is larger if the correct model is used.



3.3. A numerical example 65

0 50 100
28

30

32

34

36

38

Time [s]

(a)

0 50 100
2

4

6

8

10

Time [s]

(b)

Figure 3.1: Sample results from one simulation run of the example model with
erroneous α parameter. The diagrams show the true output hix(k) (dotted), the
actual measured output yi(k) (+), the filtered output hix̂(k|k) (solid), and the
predicted output hix̂(k|k−1) (×), where hi is the ith row in H. In each diagram,
we see (a) element one of the measurement using the MMSE initialization, (b)
element two of the measurement using the MMSE initialization,
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Figure 3.2: Consistency tests (a) average NEE test, (b) average NEES test, (c)
average NIS test, and (d) sample IAC test.
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Figure 3.3: Prediction MSE (solid) and initial state estimate error (◦) of the mea-
surable states x̂1(·|k) (×) and x̂3(·|k) (+). Each diagram shows (a) MMSE ini-
tialization with the correct model and (b) MMSE initialization with the erroneous
model.

3.4 Extensions

Paramount to the success of the Kalman filter is the assumption of a known lin-
ear system model. Many practical applications, however, do not comply with this
requirement. In some cases, it is possible to derive or design a model that cor-
responds well with the actual system. This step might involve techniques such as
identification of the system at hand and/or linearization of a given nonlinear system
model.

In other cases, a linear model with known parameters is difficult or even im-
possible to achieve due to practical considerations. In the simulations, for example,
the assumed model contains the model parameter α. If this parameter is unknown
and the performance drops when using a fixed assumed value that is too large, we
may want to extend the estimator to include estimation of this parameter as well.
The problem with this solution is that the resulting model is nonlinear and cannot
be used in the Kalman filter algorithm.

In the literature, there are a number of approaches to the problem of model
nonlinearities and unknown parameters of which we mention three here:

Extended Kalman Filter The idea of the extended Kalman filter (EKF) [12] [76]
is to linearize a nonlinear model through a Taylor series expansion and use
the linearized model for the calculation of the filter gain and the time update
of the covariance matrix. The main drawbacks with this approach are that
the EKF is not an optimal filter and that there is no guarantee that it provides
any useful estimates.
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Multiple Model Approach Using a sufficiently large bank of models, the idea of
the multiple model (MM) approach [12] is to span a model space in which
the correct model is assumed to reside. The produced estimate and its covari-
ance matrix are weighted sums of the corresponding entities of the individual
models. If the correct model is among the set of the models considered and
the same model has been in effect all the time, this estimate and its covari-
ance matrix are correct.

Interacting Multiple Model Algorithm The idea of the interacting multiple mo-
del (IMM) algorithm [12] [56] is to handle the cases where the active model
changes over time while limiting the storage requirements. This method is
suboptimal, however, because an optimal approach requires exponentially
increasing storage. The main feature of the IMM algorithm is its finite stor-
age requirement while having approximately the same computational com-
plexity as the MM approach.

3.5 Concluding remarks

In this chapter, a review of the Kalman filter was presented in the context of predic-
tion. The structure of the required process and measurement model were presented
where the discrete-time process model was derived from a continuous-time model.
Techniques on estimating initial values from the data and evaluating the consis-
tency of the Kalman filter were also discussed.

The often neglected issue of proper initialization was pursued and a simple
method for initialization the Kalman filter using an MMSE estimate when the ini-
tial values are totally unknown was presented. A more general method that may
perform better than the MMSE estimate when the distribution of the initial values
are partially known was also briefly addressed.

In high-performance applications where an optimal Kalman filter is required,
the initialization and consistency tools described in this chapter are of vital impor-
tance, if not crucial, to the result.
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Appendix 3.A Kalman filter initialization from data

Assuming that the first measurements are available from time k0, the objective is
to find an MMSE state estimate x̂(k0 + l− 1|k0 + l− 1) and its covariance matrix
P(k0 + l − 1|k0 + l − 1).

If the system is observable from the measurements y(k), it is then possible to
find the initial state estimate x̂(k0|k0 + l− 1) and its covariance matrix P(k0|k0 +
l−1) using the l first measurements with l sufficiently large. By applying the fixed
interval smoothing algorithm [4] with the interval length l, the sought estimates
can be obtained. If, however, the inverse transition matrix F−1 exists, the desired
estimates can be obtained directly, c. f. (3.74) and (3.75), as shown below.

The measurements y(k) for k = k0, k0 + 1, . . . , k0 + l − 1 are given by (3.8)
and (3.13)

y(k0) = Hx(k0) + v2(k0) (3.39)

y(k0 + 1) = Hx(k0 + 1) + v2(k0 + 1)

= HFx(k0) + Hv1(k0) + v2(k0 + 1) (3.40)

y(k0 + 2) = Hx(k0 + 2) + v2(k0 + 2)

= HF2x(k0) + H(Fv1(k0) + v1(k0 + 1)) + v2(k0 + 2) (3.41)
...

y(k0 + l − 1) = Hx(k0 + l − 1) + v2(k0 + l − 1) (3.42)

= HFl−1x(k0)

+ H

l−1∑

i=1

Fl−1−iv1(k0 + i− 1) + v2(k0 + l − 1) . (3.43)

This is a system of lny equations in the nx unknowns x(k0) and may be written
as

Y = Olx(k0) + E (3.44)

where the measurement set vector Y , the partial observability matrix Ol [50], and
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the residual E are defined as

Y 4
=




y(k0)
y(k0 + 1)

...
y(k0 + l − 1)


 (3.45)

Ol
4
=




H

HF
...

HFl−1


 (3.46)

E 4
= LV1 + V2 (3.47)

where

L 4
=




0 0 · · · 0 0

H 0 · · · 0 0

HF H · · · 0 0
...

...
. . .

...
...

HFl−2 HFl−3 · · · H 0




(3.48)

V1
4
=




v1(k0)
v1(k0 + 1)

...
v1(k0 + l − 1)


 (3.49)

V2
4
=




v2(k0)
v2(k0 + 1)

...
v2(k0 + l − 1)


 . (3.50)

For (3.44) to be solvable, Ol must have full rank. A sufficient condition for this
is that the system is observable from y(k) and that l ≥ l0 where l0 is defined as

l0
4
= inf {l : rankOl = nx} . (3.51)

Through prewhitening of the residual E , (3.44) can be reformulated as

Ȳ = Mx(k0) + ω (3.52)
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where Ȳ , M, and ω are defined as4

Ȳ 4
= R−1/2

E Y (3.53)

M 4
= R−1/2

E Ol (3.54)

ω
4
= R−1/2

E E . (3.55)

where RE is the covariance matrix of the residual E defined as

RE
4
= E(EET ) = LQ1LT + LQ12 + QT

12LT + Q2 (3.56)

and

Q1
4
= E(V1VT

1 ) =




Q1(k0) · · · 0
...

. . .
...

0 · · · Q1(k0 + l − 1)


 (3.57)

Q12
4
= E(V1VT

2 ) =




Q12(k0) · · · 0
...

. . .
...

0 · · · Q12(k0 + l − 1)


 (3.58)

Q2
4
= E(V2VT

2 ) =




Q2(k0) · · · 0
...

. . .
...

0 · · · Q2(k0 + l − 1)


 . (3.59)

Now, the MMSE estimate of x(k0) is readily computed by solving (3.52) and,
hence, (3.44). In the general case M is not square resulting in the solution

x̂(k0|k0 + l − 1)
4
= E (x(k0)|k0 + l − 1) (3.60)

= E
(
(MTM)−1MT (Ȳ − ω)|k0 + l − 1

)

= (MTM)−1MT Ȳ
= ((R−1/2

E Ol)
TR−1/2

E Ol)
−1(R−1/2

E Ol)
TR−1/2

E Y
= (OT

l R−1
E Ol)

−1OT
l R−1

E Y . (3.61)

4Note that the covariance matrix of ω is the identity matrix due to the prewhitening withR−1/2

E
.
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With x(k0) as given by (3.52), the covariance matrix P(k0|k0 + l− 1) is given by

P(k0|k0 + l − 1)
4
= E(x̃(k0|k0 + l − 1)x̃T (k0|k0 + l − 1)) (3.62)

= (MTM)−1MTE(ωωT )M(MTM)−1

= (MTM)−1MTM(MTM)−1

= (MTM)−1

= ((R−1/2
E Ol)

TR−1/2
E Ol)

−1

= (OT
l R−1

E Ol)
−1 (3.63)

where

x̃(k0|k0 + l − 1)
4
= x(k0) − x̂(k0|k0 + l − 1) . (3.64)

In the special case where Ol is square (3.60) reduces to

x̂(k0|k0 + l − 1) = (OT
l R−1

E Ol)
−1OT

l R−1
E Y (3.65)

= O−1
l REO−T

l OT
l R−1

E Y
= O−1

l Y (3.66)

with the covariance matrix

P(k0|k0 + l − 1) = (OT
l R−1

E Ol)
−1 (3.67)

= O−1
l REO−T

l

= O−1
l (LQ1LT + LQ12 + QT

12LT + Q2)O−T
l . (3.68)

Remark A necessary condition for the solution (3.60) is that Ol and RE are full
rank. For l ≥ l0 this is satisified for Ol but for RE it is required that Q2 is
full rank because L is not.

Remark If Ol is square, however, the solution is then given by (3.65) and the only
necessary condition is l ≥ l0 which is easily fulfilled for observable systems.

Applying the fixed interval smoothing algorithm [4] using x̂(k0|k0 + l−1) and
P(k0|k0 + l − 1) as initial estimates, the sought entities x̂(k0 + l − 1|k0 + l − 1)
and P(k0 + l − 1|k0 + l − 1) are obtained.

If F−1 exist, however, the sought entities can be obtained directly. Combining
(3.42) and (3.43), we may rewrite (3.44) to yield

Y = OlF
−(l−1)

(
x(k0 + l − 1) −

l−1∑

i=1

Fl−1−iv1(k0 + i− 1)

)
+ E

= OlF
−(l−1)x(k0 + l − 1) −OlFV1 + E (3.69)
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where

F 4
=

(
F−1 F−2 · · · F−l+1 0

)
. (3.70)

From (3.47) and (3.69) we can define a new residual E ′

E ′ 4
= UV1 + V2 (3.71)

where

U 4
= L −OlF (3.72)

= −




HF−1 HF−2 · · · HF−l+1 0

0 HF−1 · · · HF−l+2 0
...

...
. . .

...
...

0 0 · · · HF−1 0

0 0 · · · 0 0




. (3.73)

By proceeding analogously as when deriving x̂(k0|k0 + l − 1) in (3.60) and
P(k0|k0 + l − 1) in (3.62), the MMSE estimate of x(k0 + l − 1) is

x̂(k0 + l − 1|k0 + l − 1) = Fl−1(OT
l R−1

E ′ Ol)
−1OT

l R−1
E ′ Y (3.74)

with the covariance matrix

P(k0 + l − 1|k0 + l − 1) = Fl−1(OT
l R−1

E ′ Ol)
−1(Fl−1)T (3.75)

where RE ′ is the covariance matrix of the residual E ′.
In the special case where Ol is square (3.74) reduces to

x̂(k0 + l − 1|k0 + l − 1) = Fl−1(OT
l R−1

E ′ Ol)
−1OT

l R−1
E ′ Y (3.76)

= Fl−1O−1
l RE ′O−T

l OT
l R−1

E ′ Y
= Fl−1O−1

l Y (3.77)

≡ Fl−1x̂(k0|k0 + l − 1) (3.78)

with the covariance matrix

P(k0 + l − 1|k0 + l − 1) = Fl−1(OT
l R−1

E ′ Ol)
−1(Fl−1)T (3.79)

= Fl−1O−1
l RE ′O−T

l (Fl−1)T

= Fl−1O−1
l (UQ1UT + UQ12 + QT

12UT + Q2)O−T
l (Fl−1)T . (3.80)



3.B. Derivation of the discrete-time state transition matrix 73

Remark Note that with Ol square, the estimate x̂(k0 + l−1|k0 + l−1) is directly
given by x̂(k0|k0 + l − 1) and the state transition matrix F only, c. f. (3.66)
and (3.77). This will be true also when F is not invertible.

Remark If Ol is not square, however, the contribution of each measurement y(k)
to the estimate x̂(·|k0 + l− 1) is weighted by the noise covariance matrices,
the mixing matrix H, and the state transition matrix F.

Appendix 3.B Derivation of the discrete-time state transi-
tion matrix

To calculate the discrete-time state transition matrix eAT from the continuous-time
counterpart A, several methods may be used, e.g., series expansion or Laplace
transform [9]. With the continuous-time state transition matrix in (3.31)

A =




0 1 0
0 −α 0
0 0 0


 (3.81)

a series expansion is suitable to wit

eAT = I + AT +
1

2!
(AT )2 + . . . (3.82)

=




1 T − 1
2αT

2 + 1
6α

2T 3 − . . . 0
0 1 − αT + 1

2α
2T 2 − 1

6α
3T 3 + . . . 0

0 0 1




=




1 α−1(1 − e−αT ) 0
0 e−αT 0
0 0 1


 . (3.83)

Appendix 3.C Derivation of the discrete-time process noise
covariance matrix

From (3.11) and (3.12) we have for the process noise covariance matrix Q1(k)

Q1(k)
4
= E(v1(k)v

T
1 (k))

= E

∫ T

0
eA(T−τ)Gdw(kT + τ)

∫ T

0

(
eA(T−ν)Gdw(kT + ν)

)T
(3.84)

where A and G are defined in (3.31) and (3.32), respectively.
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Since dw(ν) and dw(τ) are independent for ν 6= τ , we obtain

Q1(k) = E

∫ T

0
eA(T−τ)Gdw(kT + τ)dwT (kT + τ)GT eA

T (T−τ)

=

∫ T

0
eA(T−τ)GΛ(kT + τ)GT eA

T (T−τ) dτ

=

∫ T

0
eA(T−τ)




0 0
1 0
0 1



(
σ2

λ1
0

0 σ2
λ2

)(
0 1 0
0 0 1

)
eA

T (T−τ) dτ

=

∫ T

0
eA(T−τ)




0 0 0
0 σ2

λ1
0

0 0 σ2
λ2


 eA

T (T−τ) dτ . (3.85)

Setting a(τ) = e−α(T−τ) and b(τ) = α−1(1 − e−α(T−τ)) we get

Q1(k) =

∫ T

0




1 b(τ) 0
0 a(τ) 0
0 0 1






0 0 0
0 σ2

λ1
0

0 0 σ2
λ2






1 0 0
b(τ) a(τ) 0
0 0 1


 dτ

=

∫ T

0




b2(τ)σ2
λ1

a(τ)b(τ)σ2
λ1

0

a(τ)b(τ)σ2
λ1

a2(τ)σ2
λ1

0

0 0 σ2
λ2


 dτ

=

∫ T

0




b2(τ) a(τ)b(τ) 0
a(τ)b(τ) a2(τ) 0

0 0 1


 dτ Σ0 (3.86)

where the matrix Σ0 is defined as

Σ0
4
=




σ2
λ1

0 0

0 σ2
λ1

0

0 0 σ2
λ2


 . (3.87)

Evaluating the integral in (3.86) we obtain

Q1(k) =




q
(1)
11 q

(1)
12 0

q
(1)
21 q

(1)
22 0

0 0 q
(1)
33


Σ0 (3.88)
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where

q
(1)
11 =

1

2α3

(
2αT − 3 + 4e−αT − e−2αT

)
(3.89)

q
(1)
12 = q

(1)
21 =

1

2α2

(
1 − e−αT

)2
(3.90)

q
(1)
22 =

1

2α
(1 − e−2αT ) (3.91)

q
(1)
33 = T (3.92)

which concludes the derivation of the discrete-time process noise covariance matrix
Q1(k).

Appendix 3.D Derivation of the MMSE estimate of the
initial state vector

Here, the MMSE estimate of the state vector x̂(k0 + l − 1|k0 + l − 1) is derived
for the compound system given by the model (3.31)-(3.38) using the expressions
presented in Appendix 3.A with l = 2. Deriving O2 as defined in (3.46) using
b = α−1(1 − e−αT ), we obtain

O2
4
=

(
H

HF

)
=




1 0 0
0 0 1
1 b 0
0 0 1


 (3.93)

which clearly is full rang as required (α 6= 0). This means that using two meausure-
ments y(k), the MMSE estimate may be calculated. Furthermore, the state transi-
tion matrix F is invertible, so the expressions (3.69)-(3.75) may be applied.
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CHAPTER 4

Multiple target tracking

IN applications where conditions change over time, there is often a need for some
type of tracking, i.e. monitoring the changing conditions. One solution to this

type of problems is represented by target tracking techniques, or multiple target
tracking (MTT) techniques if several targets (conditions) are to be tracked simul-
taneously.

Essentially, MTT is a source separation technique where the source signals are
decomposed to allow individual analysis of the source characteristics. The MTT
techniques may therefore successfully be used in other areas than the ones they
first were designed for, e.g. radar surveillance and air traffic control.

In this chapter the general idea of MTT is presented together with three com-
mon trackers where the focus is on the multiple hypothesis tracking algorithm be-
cause it is later used in the applications in Part II. Moreover, a discussion of the
applicational aspects is included.

4.1 Target tracking preliminaries

The perhaps most well-known application of MTT is radar surveillence, for ex-
ample air traffic control. The purpose is then to monitor the movements of a set
of aircrafts by forming a track for each aircraft, or target in MTT terminology.1

The track is made up of observations where each observation is a description of
the target’s state (e. g. position) at a particular time instant. The observations are

1Because of the close connection between tracks and targets, these words will be used almost
synonymously.
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collected by periodically scanning the monitored region, analyzing each scan, and
reporting possible target observations. In conclusion, the MTT system thus peri-
odically scans the region to monitor, collects any observations, and forms target
tracks.

In a wider view, the MTT system, like any tracking system for that matter,
monitors (in discrete time) how a set of conditions change over time. From a
measured signal, possibly non-scalar observations of the status of the monitored
conditions (tracks) are derived. The main problem is that which condition (track) a
certain observation contains information about, the so-called observation-to-track
association, is not known a priori. The major complexity of a MTT system is
also found in the association algorithms intended to unravel this problem. The
problem is very hard, however, and in the literature there are numerous approaches
described. In the following sections three of the most common ones are presented.

Before going into the details of the observation-to-track association, the actual
derivation of the observations is discussed. For each scan, the set of observations
are derived from collected data retrieved by the scanning device using a detector.
The data may be collected from a single sensor or multiple sensors, but multiple
sensors may be treated as a single multidimensional sensor if they are independent
of each other. Two sensors measuring height and distance, for example, may be
treated as a single twodimensional sensor.

Often, the sequence of observations contains errors that the tracker should han-
dle in a robust way. The most common errors stem from clutter and missed de-
tections. Clutter is a collective term of all erroneous observations that the detector
reports to the tracker. It is often a major problem because it produces false target
observations that place an upper limit on the performance of the tracking system.

The other type of error, missed detections, is often influenced by the noise in
the collected data. Clearly, this also sets an upper limit on the performance and the
tracking system is required to be robust to these errors.

In this thesis a special MTT problem is presented, which actually is a source
separation problem. In this case there is a single sensor and multiple targets. The
data contains signals (target echoes) that are detected using a detector described
in Chapter 2. The signals are emitted from sources (objects) and the tracker’s
objective is to discriminate between the detected signals and decide from which
source each signal originates.

A block diagram of a general tracker needed for this problem is shown in Fig-
ure 4.1. The measured data collected from the sensor is fed to the detector that
reports all potential locations of the signals. The reports are sent to the tracker
that associates the observations to targets. To facilitate the association process, the
tracker may use a predictor that generates a predicted observation for each track
formed by the tracker. In a causal tracking system, the predictor uses earlier detec-
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measured
data

- Detector

D

Predictor

Tracker

?

tracks

Figure 4.1: A block diagram of an MTT system. Data flow is indicated by solid
lines; thin for single data and thick for multiple data. Control flow is indicated by
dashed lines.

tions only, which is symbolized by the delay (D) step in the figure. In this way, the
association of the observations to targets are guided using a model of the target’s
characteristics.

Because the tracker forms tracks by associating observations with targets, the
tracker block in Figure 4.1 is often called an association filter or correlation filter.
Throughout this presentaion, tracker and association filter is used synonymously.
In the following sections the contents of the tracker block is presented for three
common types of association filters.

4.2 Nearest neighbor tracking

The simplest association filter possible is the nearest neighbor (NN) association
[13]. Each target is associated with the observation closest to the target’s predicted
observation. This type of tracker therefore needs a distance measure in addition
to the predictor. In the simplest case, where the sensor is one dimensional, the
distance measure is trivial. When using multi dimensional sensors, the distance
measure is often straight-forward to derive if the dimensions of the observations are
of the same kind, e.g. spatial position. In other cases there may be some difficulties
in deriving a distance measure, but often a suitable measure can be found.

The main advantage of the NN tracker is its simplicity and, hence, its computa-
tional speed. Therefore, the NN tracker has been very popular in radar surveillance
applications where the computational requirements have been demanding. Due to
computational improvements of other trackers and the introduction of more power-
ful computer systems, the NN tracker is more rarely used in modern MTT systems.

The disadvantages of the NN tracker are poor performance in the presence of
false alarms and for closely spaced targets. Moreover, the demand on the predictor
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is higher compared to other trackers, since it is cruical that the distance between
the correct observation and the predicted observation, i.e. the prediction error, is
small.

4.3 Joint probabilistic data association tracking

The joint probabilistic data association (JPDA) [11] tracker differs from the NN
tracker in several respects. The NN tracker uses a so-called hard-decision corre-
lation logic, whereas the JPDA tracker uses a soft-decision correlation logic. This
means that the JPDA tracker does not pick out a particular observation and asso-
ciates it with a target as the NN tracker does, which is a irrevocable (hard) decision.
Instead, the JPDA tracker associates all observations with a target and produces a
virtual observation that is a mix of the associated observations weighted by their
probability of originating from the target in question. Therefore, the JPDA tracker
has a good resistance to clutter and missed detections.

The disadvantages of the JPDA tracker is its tendency of coalescing or swap-
ping neighboring tracks and its high computational complexity. The latter is be-
coming less of a problem with more effective algorithms and more powerful com-
puter systems, however.

Even if the JPDA tracker does not explicitly make use of a predictor, it still
needs a target model in order to compute the probabilities of an observation origi-
nating from a particular target. Such a model may be interpreted as a predictor in
accordance with Figure 4.1.

4.4 Multiple hypothesis tracking

Multiple hypothesis tracking (MHT) [69] is recognized as the theoretically best
approach to multitarget tracking problems. In applications with heavy clutter and
high traffic densities, the performance of MHT is outstanding compared to other
methods, e.g. nearest neighbor (NN) correlation or joint probabilistic data asso-
ciation (JPDA) [21]. The brief presentation given in this section is influenced by
Blackman and interested readers are referred to his books [13] and [16].

Both MHT and JPDA are Bayesian probabilistic approaches to the tracking
problem. The MHT method uses a hard-decision correlation logic, however, and all
possible combinations of associating observations with targets are enumerated and
ordered according to their probability of being correct. Because of this, the correct
partitioning of the collected data are always present and, hence, the MHT tracker
outperforms any other method if the memory and computational requirements can
be met.
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The computational requirements are, however, enormous and increase expo-
nentially with the complexity of the tracking situation. This is the major disadvan-
tage of the MHT tracker and has often limited its use in practical cases, especially
in on-line applications.

By arranging the storage of observations in a clever way, limiting the enumera-
tion, and keeping only the most probable partitions, a suboptimal algorithm may be
derived. Today, such an algorithm is a good choice for a practical tracking system,
owing to the increased power of computing systems.

4.4.1 Overview of the MHT tracker

For each scan in the recorded data, the observations are collected by the tracking
system. At a given time and with a given set of observations, there are several
plausible ways to combine the observations into tracks. Instead of choosing only
the most probable partitioning after each scan, the MHT tracker generates a number
of different partionings, so-called hypotheses, to be evaluated later when more data
are received. Thus, the probability of choosing the correct partitioning of the data
into tracks and false alarms is increased.

Because there will, in general, be several hypotheses available, a way of pick-
ing the “best” one is needed. With the Bayesian approach, the hypotheses are
ranked by their a posteriori probability. Any monotonic function of the probability
may, of course, be used to rank the hypothesis. Often, the logarithm is used and
scaled in such a way that a partitioning of the data into just false alarms yields the
value zero. This ranking function is referred to as the hypothesis score.

Similar to the JPDA tracker, the MHT tracker does not explicitly need a pre-
dictor. Unless an ad hoc ranking function is used, however, the information needed
to derive the score is often sufficient to produce a predictor and, thus, the scoring
function may be regarded as a predictor in accordance with Figure 4.1. Moreover,
when the hypothesis generation is limited using the gating technique, see Sec-
tion 4.4.4, a predictor is really needed. Therefore, it is fair to say that the predictor
is an important part of the MHT tracking system.

In Figure 4.2 a block diagram of the MHT algorithm is presented. For each
trace, the control logic iterates over the current track set. The track currently se-
lected is fed to the predictor where the expected target observation is calculated.
A gate is formed around the prediction and all observations (in the current trace)
that fall outside the gate are discarded, see Section 4.4.4. The current track and
the gated observations are used by the track generator to both create updates of the
track and to create entirely new tracks. The tracks produced by the track gener-
ator are then fed to the hypothesis generator as well as stored for later use in the
processing of the observations of the next trace.
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Figure 4.2: A block diagram of the MHT algorithm. Data flows are indicated
by solid lines; thin for single data and thick for multiple data. Control flows are
indicated by dashed lines whereas other intimate relations are indicated by dotted
lines.

At the same time as the current track was selected, the control logic also se-
lected all hypotheses containing that track. These hypotheses are used together
with the generated tracks to form updated hypotheses. The generated hypotheses
are then stored in the hypothesis storage.

When the track iteration is completed, the scores of all hypotheses are calcu-
lated and used to prune hypotheses (and tracks) associated with a low score, see
Section 4.4.4. The process is then repeated for the observations in the next scan.

Note that the MHT algorithm structure does not depend on a particular predic-
tor. The same algorithm may, in principle, be used for any tracking problem. Only
the predictor needs to be changed.

4.4.2 Forming and ranking hypotheses

As mentioned above, the basic idea of the MHT method is to enumerate all pos-
sible combinations of observation to track associations. A hypothesis therefore
consists of a hypothesized set of tracks containing a hypothesized set of obser-
vations. Within each hypothesis, an observation can be associated to at most one
track. If an observation is not assigned to any track, it is considered as a false alarm
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or clutter.
With this strategy, any track may be a part of several hypotheses and an efficient

enumeration of all possible partioning combinations is obtained by focusing on the
tracks instead of the hypotheses, see [13] for details.

Either way, the enumeration of all possible combinations give rise to a vast
number of hypotheses. In order to rank all these and to find the “best” one, a
ranking function is needed. Using the Bayesian approach, the ranking function
is the a posteriori probabilty of each hypothesis. If the a posteriori probability is
a product of several terms, it is beneficial to use the logarithm of it instead, in
which case it is called the score. Often, the score is scaled in such a way that an
all-false-alarm partitioning of the observations yields a score of zero.

Assuming that the tracks are independent of each other, the score of a hypoth-
esis at scan k may be expressed as

L(k) =

nk∑

i=1

Li(k) + L̃ (4.1)

whereLi(k) is called the track score, L̃ is the residual hypothesis score due to track
termination (see Section 4.4.3), and nk is the number of targets (tracks) associated
with this hypothesis at scan k.

As suggested in [15], the track score can often be calculated recursively as

Li(k) = Li(k − 1) + ∆Li(k) (4.2)

∆Li(k) =

{
L

(0)
i (k), not updated

L
(1)
i (k), updated

(4.3)

where L(·)
i (k) describe the (different) scores that are used depending on whether

the track was updated or not. By using (4.1)-(4.3) the hypothesis score may be
calculated efficiently and this improves the performance of the tracker.

4.4.3 Track stages

As the tracking proceeds, the tracks may be in any of five possible track stages:
potential, tentative, confirmed, deleted, and terminated. The last stage is not used
in [13], but is an important addition when the tracking principle is used for dis-
crimination or source separation problems. The presentation also becomes more
consistent. Below, the track stages are explained further.
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Potential

A single observation not associated to any existing track could either be a false
alarm (or clutter) or be the first detection of a new target. While awaiting more
data in order to solve this discrepancy, the observation is associated to a so-called
potential track.

Tentative

As a potential track is assigned an additional observation, there may still be uncer-
tanties whether the assigned observations originate from a true target or if they are
a coincidential collection of false alarms. Until the track has been assigned enough
observations in order to solve this discrepancy, the track is called a tentative track.

Confirmed

When a tentative track has been assigned sufficiently many observations in order
to assure that they originate from a true target, the track is called confirmed.

Deleted

When a tentative track has been assigned several observations it may be apparent
that they cannot originate from any real target. In this case the track is deleted and
the assigned observations are considered as false alarms.

Terminated

As a confirmed target does not get updated with new observations, the question
arises whether the target has disappeared or if its detection has failed. When suf-
ficiently many detections have been missed in order to assure that the target has
disappeared, the track is terminated. Hence, it is disabled from further updates and
its track length is set to the position of the last update. Note that the score of the
track still contributes to the hypotheses score. It is therefore beneficial to terminate
tracks because short tracks have a higher score than longer un-updated ones.

The problem of track termination is the possibility of premature termination,
i.e., there is a chance that the track would have been updated in the next trace if
it hadn’t been terminated. The track termination must be delayed sufficiently long
so that any additional updates still would result in a lower score than if the track is
assumed to be ended at its last update.
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4.4.4 Hypothesis limiting techniques

Gating

To restrict the number of hypotheses processed by the tracking system, an obvi-
ous way would be to avoid generating unlikely hypotheses. As hypotheses are
generated by the observation-to-track associations, only the likely ones should be
allowed to be introduced.

By adopting the gating technique, a gate is formed around the predicted obser-
vation and only those observations that fall within the gate, i.e., are close enough
to the predicted observation, are considered for association to the track in question.

Analogous to the NN tracker, see Section 4.2, a distance measure is needed.
Often this is readily given by the predictor. For example, using a Kalman filter, the
normalized distance between the observation and the predicted observation may be
defined as

d2(k)
4
= ỹT (k)S−1(k)ỹ(k) (4.4)

where the residual vector ỹ(k) is defined according to (3.16) and its inverse covari-
ance matrix S−1(k) by (3.17).2

The gating condition is then simply

d2(k) ≤ G (4.5)

where the limit G is set to reflect the trade-off between limiting the hypothesis
generation and achieving robust performance.

It is highly recommended to use gating in order to achieve a practical track-
ing implementation. The gating technique is efficient in limiting the number of
hypotheses generated while it has a low (negative) impact on the tracking perfor-
mance.

Clustering

Since the computational complexity grows exponentially with the number of tracks,
the most effective way to reduce it is to separate non-interacting hypotheses into
independent clusters [10] [69] (not shown in Figure 4.2). Instead of solving one
large tracking problem, a number of smaller tracking problems are then solved
separately for each cluster of hypotheses.

Combined with gating, the clustering technique may reduce the computational
complexity of the tracker dramatically. For example, two targets with non-over-
lapping trajectories may be treated separately. Assuming that the tracking of each

2The term d2(k) is actually a squared distance, but, for convenience, it is often referred to as
simply a distance.
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target generates 3 hypotheses for each scan. If both gating and clustering are used,
the two targets are treated separately yielding a total of six (3 + 3) hypotheses.
If, however, only gating is used, the result is a total of nine (3 × 3) hypotheses
generated for each scan. If neither is used, the number of hypotheses generated is
even larger.

Using only the clustering technique is still useful, but not as effective as when
combined with gating. Without gating, all clusters are merged for each new scan
because each observation is then assigned to all tracks. Hence, all tracks interact
and must be part of the same single cluster. Not until sufficiently many unlikely
hypotheses are discarded, in which case the interfering assignments are discarded
as well, the two targets may be handled in separate clusters. Therefore, clustering
without gating, at best, results in a periodical merging and clustering pattern that
deteriorates the performance considerably.

Pruning

As mentioned above, the MHT method defers the evaluation of the hypotheses
until more data is received in order to make a better decision. It is however, not
desirable to keep unlikely hypotheses for extensive periods of time as it slows down
the tracking process and increases the storage requirements.

Thus, unlikely hypotheses are discarded in a process called pruning where the
low probability hypotheses are deleted. There are several possibilities to choose the
set of hypotheses to be removed. In general, the pruning strategies can be divided
into two major groups. In the first group, the hypotheses are pruned based on their
score only. This is the simplest pruning technique, but the performance is in some
cases poor due to sudden changes in tracking decisions.

In the other group, the hypotheses are pruned based on their interrelationships
as well as on their score. This technique is often called root node pruning [14],
because the relations between the hypotheses may be organized into a tree-like
structure.

Using root node pruning, the node hypothesis that is the ancestor N scans ago
to the currently best hypothesis is identified. This node is called the root node and
it constitute the new root of the hypothesis tree. All hypotheses that do not belong
to this tree are deleted. This way, the tracks in the remaining hypotheses differ only
for the N last scans and this pruning method is often termed N -backscan pruning.

The root node pruning performs well if N is large enough compared to the
dynamics of the tracking situation. Otherwise rapid track changes may be lost.
The storage requirements can be exhaustive, though, because the hypotheses tree
often grows rapidly. In practice, the value of N is seldom greater than, say, three
to five.
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Combining

Yet another technique to limit the number of hypotheses is the combining technique
in which similar tracks and hypotheses are combined to decrease the number of
hypotheses managed.

In a classical tracking scenario, when the history is used only to improve the
certainties of the present situation, this is a good candidate for hypothesis limita-
tion. For example, two tracks may differ only with respect to their starting points
several scans ago. It is, thus, reasonable to believe that this difference is no longer
important for the future data processing and that the tracks could be combined into
one.

If, however, the tracking is used in a source separation scenario, the combining
technique is, clearly, not necessarily a good technique. If combining is used, it is
important that the hypothesis score remains unchanged after track combining.

4.5 Concluding remarks

This chapter introduced the concept of multiple target tracking in general and of
multiple hypothesis tracking (MHT) in particular.

The MHT method is based on a Bayesian statistical approach to the tracking
problem that provides the optimal tracking result if its computational and memory
requirements are met, and if the statistical model correctly describes the situation
at hand.

Due to the often exponential increase in number of hypotheses generated, a
suboptimal method is in general used that limits the number of stored and evaluated
hypotheses. This chapter discussed several such variants.

Moreover, by cleverly storing and evaluating the hypotheses the storage and
computational requirements may be lowered even further. These improvements
in combination with the increased power of computing systems makes the MHT
method a good tracking solution even for on-line systems.
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CHAPTER 5

Wiener-filter deconvolution

FINDING the input signal to a particular system when only a noisy output sig-
nal is available, commonly referred to as deconvolution, is a problem often

encountered in practice. If the second order properties of the noise and the transfer
function of the system are known, then Wiener filtering [51] [99] is a well-known
method to optimally estimate the input signal in a mean square sense.

Wiener filters may be designed to estimate any signal related in a known way
to a measurement. The only requirements are that the underlying dynamic system
is linear, that both the signal of interest and the measurements are stationary and
correlated, and that their cross spectrum is known [76, pp. 183-189].

The Wiener filter may be applied to the measurement signal in the time domain
or in the frequency domain. For our purposes in Chapter 8, we prefer to use off-line
data in a batch approach and to apply the Wiener filter in the frequency domain,
because non-causal, sampling-frequency independent filters are easier to formulate
in this way.

The Wiener filter design is considered here for discrete-time systems only.
Owing to the choice of working in the frequency domain, a generalization to
continuous-time systems is simple to derive, if required. In particular, we con-
sider a signal consisting of impulses with finite energy in additive noise with finite
power because this is what is encountered in the application presented in Chapter 8.

In this chapter the basis of Wiener filtering is illustrated. This includes a brief
analysis of the problem that arises when mixing energy and effect signals. Our
approach to this problem as well as other implementation issues are addressed fol-
lowed by a simulation where a compound signal is deconvolved in order to discern
the individual components.

89
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5.1 The discrete-time Wiener filter

The objective of the discrete-time Wiener filter design is to find the linear, time-
invariant filter G(q) that minimizes the mean square error (MSE) criterion

J
4
= E(||s(n) −G(q)y(n)||2) (5.1)

where q is the forward shift operator and s(n) is the signal to be estimated from
the measured signal y(n).

5.1.1 The unrealizable Wiener filter

The filter G(q) that minimizes the criterion in (5.1) consitutes the optimal (linear)
mean square estimator of s(n) given y(n). It’s Z-transform G(ζ) is given by

G(ζ) = φsy(ζ)φ
−1
y (ζ) (5.2)

where φsy(ζ) is the cross spectrum between s(n) and y(n), while φy(ζ) is the
spectrum of the measured signal y(n) [76]. This filter is, however, non-causal in
that it uses future data to calculate the estimate of s(n) at a particular time instant.
Its impulse response is in general infinite both forward and backward in time, and
it is therefore often referred to as the unrealizable Wiener filter.

5.1.2 The realizable Wiener filter

In applications where causality is required, an MSE-optimal estimator may be de-
rived under a causality constraint. The resulting realizable Wiener filter will have
lower performance (higher MSE) than the theoretical performance obtained by the
non-causal estimator.

For non-causal filters where the magnitude of the impulse response decays suf-
ficiently fast, an appropriate filter can be obtained through truncation and time
shifting of the impulse response.1 The performance of the resulting truncated ap-
proximate Wiener filter is often comparable with that of the unrealizable filter if
the truncation point is carefully selected.

A corresponding processing delay, or smoothing lag can also be included in
a Wiener estimator derived under causality constraints [2] [90]. The MSE perfor-
mance of such an estimate, ŝ(n−ns|n), approaches that of the unrealizable Wiener
filter as the processing delay ns is allowed to increase.

1Note that this estimator is not identical to the Wiener filter derived under causality constraints.
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5.1.3 Deconvolution in the time domain

With an appropriate Wiener filter G(q) available, the estimate of s(n) is simply

ŝ(n− ns|n) = G(q)y(n) (5.3)

where ns ≥ 0 is the processing delay introduced due to the required causality of
the filter G(q).

5.1.4 Deconvolution in the frequency domain

A batch of collected data may be transformed into the frequency domain, where
the Wiener filter can be applied off-line. The Wiener estimate of S(ζ) is then given
by

Ŝ(ζ) = G(ζ)Y (ζ) (5.4)

where Ŝ(ζ) and Y (ζ) are the Z-transforms of ŝ(n) and y(n), respectively, while
G(ζ) is given by (5.2).

This batch approach has similarities with the truncation and time shifting ap-
proach to the non-causality problem, see Section 5.1.2. The processing delay in-
troduced by the batch approach is, however, not a constant; it is largest for past
data and is virtually zero for the most recent data within the batch.

5.2 Implementation issues

To design and apply the Wiener filter in the frequency domain, it is sufficient to
consider each spectrum on the unit circle only, the spectral density. The discrete-
time Fourier transform (DFT) can therefore be used for the transformation between
the time and frequency domains. Use of the FFT algorithm enables the design of a
computationally fast implementation of the Wiener filtering.

5.2.1 The discrete-time Fourier transform

Discrete-time Fourier transforms (DFTs) presented in the literature are often with-
out physical units as well as being a sampling-frequency dependent, scaled version
of the continuous-time counterpart. In this thesis, both these aspects are very im-
portant and we therefore present a DFT below that has the appropriate units and
also directly corresponds to the continuous-time counterpart.
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From calculus we know that for a particular signal xc(t) measured in [mV]
with t being the time in [ms], the following holds

xc(t) =

∫ ∞

−∞
Xc(f)ei2πft df [mV] (5.5)

Xc(f) =

∫ ∞

−∞
xc(t)e

−i2πft dt [mV/kHz] (5.6)

where f is the frequency in [kHz]. Then Xc(f) is called the Fourier transform of
xc(t) and xc(t) is called the inverse Fourier transform of Xc(f).

If the Nyquist criterion is fulfilled for a signal (batch) of length T [ms], the
continuous-time Fourier transform may then be approximated using N = T

Ts
dis-

crete-time samples xc(nTs), n = 0, 1, 2, . . . , N − 1 where Ts is the sampling
period. This may be summarized as

x̂c(t) ≈
N−1∑

n=0

X(n/T )ei2πtn/T 1

T
[mV] (5.7)

X̂c(f) ≈ X(f) =
N−1∑

n=0

TN (n)xc(nTs)e
−i2πfnTs Ts [mV/kHz] (5.8)

where TN (n) is an N-point Hanning window [48, pp. 146-148] normalized to unit
power. This window may, however, be omitted for signal waveforms completely
accommodated within the selected data window (batch).

5.2.2 Filter implementation

Using the FFT algorithm, a computationally fast approximate Wiener filter was

implemented as follows (Ω
4
= ei2πf/fs):

1. Transform to the frequency domain – Use (5.8) to transform the measured
signal y(n) and obtain Y (Ω) in the frequency domain.

2. Apply the Wiener filter – Create Ŝ(Ω) in the frequency domain by multiply-
ing the Wiener filter G(Ω) with the signal Y (Ω).

3. Inverse transform to the time domain – Use (5.7) to transform Ŝ(Ω) back to
the time domain and obtain the desired signal estimate ŝ(n).

This procedure is summarized by the expression

ŝ(n) = F−1 {G(Ω)F {y(n)}} (5.9)
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where F and F−1 are the (discrete-time) Fourier transform and the inverse (discrete-
time) Fourier transform, respectively. These are implemented using the FFT algo-
rithm in accordance with (5.8) and (5.7) where the vectors containing the samples
are padded with zeros to their double length. The latter operation avoids circular
convolution.

5.3 Numerical examples

This section demonstrates Wiener filtering through a numerical example and also
discusses the problem of tuning a Wiener filter when the signal consists of a single
pulse with a finite energy.

5.3.1 Measurement model

In the Wiener filter design, the spectral density of the measured signal and the
cross spectral density between the measured signal and the signal to be estimated
are needed. Here we present the measurement model from which these entities
may be derived.

Assume the measurement system may be described by

y(n) = H(q)s(n) + v(n) [mV] (5.10)

s(n) = F (q)x(n) (5.11)

v(n) =
C(q)

D(q)
e(n) [mV] (5.12)

where, as above, y(n) is the measured signal and s(n) is the signal to estimate.
Moreover, F (ζ) and H(ζ) are transfer functions that describe how to generate
s(n) from the input x(n) and y(n) from s(n), respectively. The entities C(ζ) and
D(ζ) are polynomials that define the additive measurement noise v(n) where e(n)
represents white, zero-mean Gaussian noise.

The model (5.10) may be transformed to the frequency domain

Y (Ω) = H(Ω)S(Ω) + V (Ω) [mV ms] (5.13)

S(Ω) = F (Ω)X(Ω) (5.14)

V (Ω) =
C(Ω)

D(Ω)

√
ηT [mV ms] (5.15)

where Y (Ω) is the DFT of y(n), S(Ω) is the DFT of s(n), etc. The white noise
process e(n) has the spectral power density η. These models are specified further
below.
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Figure 5.1: Sample results from the simulation that shows (a) the signal s(n) as
a response to a single impulse in x(n) and (b) the measured output y(n) without
noise as a response to a single impulse in x(n).

5.3.2 Signal model

For the examples in this section we assume signal models with the following im-
pulse responses

f(n)
4
=

{
fsTNf

(n), 0 ≤ n ≤ Nf − 1

0, otherwise
[1/ms] (5.16)

h(n)
4
=

{
fs sin

(
2πn

Nh−1

)
TNh

(n), 0 ≤ n ≤ Nh − 1

0, otherwise
[mV/ms] (5.17)

where Nf = 5, Nh = 40, F (Ω) = F {f(n)} and H(Ω) = F {h(n)}, see also
Figure 5.1.

5.3.3 Noise model

The following second order ARMA noise model is used in the simulations below

C(ζ) = 0.04(ζ2 − ζ + 0.25) (5.18)

D(ζ) = ζ2 − 1.8ζ + 0.81 . (5.19)

The spectral power density of the noise, Pv(Ω) is then

Pv(ζ) =

∣∣∣∣
C(ζ)

D(ζ)

∣∣∣∣
2

η [mV2/kHz] . (5.20)
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Figure 5.2: The spectral power density of the noise model (dashed) with an exam-
ple realization (solid) included.

5.3.4 Deconvolution in the frequency domain

To find the optimal Wiener filter G(Ω) on the unit circle using (5.2), the cross
spectral density φsy(Ω) and the spectral density φy(Ω) are required.

However, there is one major problem in this example, which will also appear
in the realistic setting of Chapter 8: The deterministic signals are of finite energy,
referred to as energy signals, while the stochastic noise is of finite power, referred
to as a power signal. Albeit the difference is subtle, its implications are of major
importance.

To exemplify this, assume first that the design is based on the spectral energy
density. This would result in a filter design that erroneously regards an increased
batch length (all other parameters being unchanged) as an increase of the noise
level. The total noise energy within the data batch will then increase while the
signal energy remains constant.

By basing the design on the spectral power density instead, the problem is the
opposite. This would result in a filter design that regards an increased batch length
as a decrease in signal strength of the energy signals, while the noise power remains
constant.2

We approach this problem by finding the largest batch Tv within which the
signal s(n) actually (significantly) affects the output y(n) at some time instant.
With a finite-length signal generated by the signal model, Tv is also finite and

2The result of this on the Wiener filter design becomes exactly the same as when spectral energy
density is considered.
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at most twice the duration of the signal.3 In cases where it is difficult to find a
suitable criterion for the definition of Tv it may simply be regarded as a design
variable. Note that the parameter Tv is set to a fixed value that depends on a subtle
relationship between the signal and the noise. It does in no way depend on the
batch length T .

As shown in Figure 5.1 (b), the length of the output signal is in this example
about 2 ms. We therefore use a Tv twice of this value, or

Tv
4
= 4 [ms] . (5.21)

With the model (5.10), the spectral energy densities become

φsy(Ω) = X(Ω)F (Ω)X∗(Ω)F ∗(Ω)H∗(Ω) (5.22)

φy(Ω) = |X(Ω)F (Ω)H(Ω)|2 + Pe(Ω)Tv (5.23)

which yields the Wiener filter using (5.2)

G(Ω) =
X(Ω)F (Ω)(X(Ω)F (Ω)H(Ω))∗

|X(Ω)F (Ω)H(Ω)|2 + Pe(Ω)Tv
. (5.24)

In Figure 5.3 (a), an example simulation is shown (η = 10−3 mV2/kHz) where
four responses are placed in such a way that the negative and positive peaks of the
responses in the middle cancel each other. It is not obvious from the figure that
there are four responses active in the measured output y(n).

By deconvolving y(n) using the Wiener filter derived above to estimate the
signal s(n), the four peaks clearly appears, see Figure 5.3 (b). Because there is
noise present in the measured output, the Wiener filter is forced to decrease the
gain at the frequencies where the noise is dominant. This is manifested by the
decreased amplitude of the estimated signal ŝ(n) compared to the true signal s(n)
as shown in the figure. Moreover, the base line is disturbed by the amplified noise.

5.4 Concluding remarks

This chapter briefly presented the Wiener filter. The focus was on Wiener filtering
in the frequency domain where the FFT algorithm may be used to create a compu-
tationally fast implementation. This implementation constitutes an approximation
of the unrealizable (non-causal) filter.

3If the largest batch in this respect is longer than twice the duration of the signal, the filter is not
optimal because it allows samples containing noise only to affect the filtered output.
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Figure 5.3: An example of deconvolution using a Wiener filter. (a) The mea-
sured signal y(n) is shown where the individual responses are placed to maximally
cancel each other. The responses in the middle are almost completely cancelled
whereas the leftmost and rightmost responses are only partially cancelled. (b)
By applying the Wiener filter, the four peaks of the signal s(n) (dashed) appears
clearly in the estimated signal ŝ(n) (solid) albeit with a lower amplitude and dis-
turbed base line.

Because non-causal Wiener filters are handled easily in the frequency domain,
the realizable Wiener filter was mentioned only briefly. Similarily, Wiener filtering
in the time domain was not considered more than conceptually.

There also exist several good methods of Wiener filtering in the time domain.
See, e.g., [2] [90] [3]. These filters may be extended to incorporate an averaged
MSE minimization criterion, c. f. (5.1), applied to a class of models. This approach
may be used for robust Wiener filter design when there are model uncertainties.

Due to the mixing of finite energy signals with finite power noise as considered
in this chapter, a scalar design parameter, here denoted Tv, must inevitably be
introduced.
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CHAPTER 6

Action potential model of a muscle fiber

RELIABILITY and efficiency when diagnosing muscle and nerve disorders us-
ing electromyography (EMG) is essential. To improve both aspects, the rela-

tionship between the physiological conditions and the electric signal of the muscle
upon activation must be accurately known. A mathematical model has several
advantages in this respect. Besides being a compact description of the present
knowledge, it may also be used for simulations to obtain new insights. Also, and
perhaps more intriguing, a mathematical description makes it conceivable to use
signal processing methods for “digital dissection”, where the physiological param-
eters are presented to the clinician.

The knowledge about the electrical events in the muscle fiber membrane and
the volume conduction characteristics of muscle tissue has made it possible to sim-
ulate the APs as if they were recorded with a particular electrode. Without simpli-
fication, however, volume conduction theory [22] [20] [70] leads to complex and
time-consuming calculations. Therefore, many of the first simulations assumed an
infinite volume conductor and approximated each of the two spreading depolariza-
tions by a moving dipole or tripole [40] [30] [17].

Because the dipole and tripole models have some shortcomings [62], other ap-
proximations were sought. The line source model is obtained by considering the
AP as a convolution of a weighting function and a transmembrane current lumped
to the center of the muscle fiber [5]. This is a very powerful model that can simu-
late, e.g., finite volume conductors and finite length fibers [37]. Unfortunately, its
complexity makes it unsuitable for fast simulations.

If the volume conductor is assumed infinite, the line source model is simplified
considerably while retaining a reasonable accuracy compared with volume con-

101
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duction theory for most types of muscle fibers.1

With the development of the first mathematical descriptions of the membrane
potential [47] [20], realistic simulations were simplified. An efficient implemen-
tation of the line source model was presented in [62] where the convolution of
the transmembrane current and the electrode weighting function are calculated in
the frequency domain using the FFT algorithm. Aliasing may arise, however, if the
Nyquist criterion is violated when the line source model is discretized. This crucial
aspect has not been properly addressed in the literature. In this paper, we identify
the sources of aliasing and present a design variable that simplifies the selection of
a proper discretization frequency.

Often, fast simulations are needed. We meet this requirement by introducing
an anti-aliasing filter that lowers the required dicretization frequency considerably.
This makes it possible to improve the performance of the simulations by either de-
creasing the calculation time, increasing the accuracy, or attaining both objectives.

Recently, the importance of the finite length of the muscle fibers has been stud-
ied [42] [38] [26]. Assuming a finite muscle fiber length in a line source model is
straight-forward but has to be done properly to avoid the introduction of artifacts
in the model output. In [26], this issue is properly addressed but the discontinuities
are handled separately from the convolution. We take this one step further and
show that it is possible to account for the finite fiber length by a simple transfor-
mation of the weighting function. The calculations may then be carried out in one
step which makes the calculations simpler.

The focus of this paper is on modeling of single muscle fiber APs, with simu-
lation of entire MUs and different measuring electrodes in mind. The efficiency of
the calculations is therefore a very important aspect in which the anti-aliasing filter
and the weighting function transformation play a central role.

In addition to simulation, accurate models may be used in filter design, in par-
ticular the deconvolution of the EMG signal described in Chapter 8. Describing
the model in a transfer function form is beneficial in this perspective. The ultimate
goal would then be the situation where the EMG signal, obtained with the con-
centric needle electrode, is decomposed into single muscle fiber AP components,
using model-based deconvolution.

The chapter is organized as follows. In Section 6.1 the continuous-time line
source model is presented and the effects arising from having a finite muscle fiber
length are derived. In Section 6.2 the model is discretized into a discrete-time
model. The cause of the aliasing errors is presented and an anti-aliasing filter is
introduced. In Section 6.3 the three most common electrode types are presented.

1The Purkinje fibers of the heart have physical dimensions that break several assumptions of the
model and may lead to significant errors [45].
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Figure 6.1: The nerve impulse is conducted along the peripheral nerve axon and
triggers the muscle fiber at the motor endplate. This results in a depolarization of
the muscle fiber membrane that, in turn, causes a transmembrane current to appear
and spread towards the two fiber endings where it vanishes. This distribution
in both time and space of the transmembrane current is then measured by the
electrode.

Simulation results are presented in Section 6.4 followed by a concluding discussion
in Section 6.5.

6.1 A continuous-time model

As mentioned above, the muscle fiber receives a nerve impulse from the axon and
becomes depolarized, see Figure 6.1. The depolarization generates a transmem-
brane current that originates at the motor end plate and propagates along the fiber
towards the two tendons. Assuming the fiber properties are constant along the fiber,
the resulting potential measured by a particular electrode is obtained by convolving
the transmembrane current with an electrode dependent weighting function. The
measured AP, denoted φc(t), from one fiber may thus be modeled by

φc(t) = Wc(p)Ic(p)xc(t) (6.1)

or, in the frequency domain,

Φc(s) = Wc(s)Ic(s)Xc(s) (6.2)

where p is the derivative operator (pxc(t) = d
dtxc(t)), Wc(·) is the electrode de-

pendent weighting function, and Ic(·) is the transmembrane current. The impulse
train delivered by the axon is described by xc(t) and Xc(s) in the time domain and
the frequency domain, respectively. This model, explained in more detail below, is
illustrated in Figure 6.2.
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Figure 6.2: The generation of an AP, denoted φc(t), using the line source model
is illustrated in a two-dimensional spatio-temporal view. The spatial dimension is
along the axial direction of the muscle fiber and is drawn from left to right in the
figure. The temporal dimension is drawn from top to bottom where time increases
downwards. At t = 0, a depolarization is initiated at the motor end plate (z =
0) causing two transmembrane currents to move towards the fiber endings where
they vanish at t = τf (z = zf ) and t = τr (z = zr), respectively. The electrode is
positioned at z = z0 and records the resulting AP, i.e., the time-space transmem-
brane current distribution, ξ(t, z), weighted by the electrode characteristic spatial
weighting function, w̄(z). Next to the resulting AP is an enlargement of it with
the central part excluded. The end effects, or terminal waves, originating from
the two muscle-tendon junctions are indicated by arrows. Note the absence of a
corresponding motor end plate effect at t = 0.

To simplify the notation and the calculations below, we assume that xc(t) con-
tains only one pulse at t = 0, i.e., xc(t) = δ(t), where δ(t) is the Dirac function.
Extending this to the general case is straight-forward.

6.1.1 The temporal transmembrane current

We derive the temporal transmembrane current Ic(s) in (6.2) using the core con-
duction model [5]. According to this model the spatial instantaneous transmem-
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Figure 6.3: The instantaneous spatial distribution along the fiber of (a) the intra-
cellular potential and (b) its second derivative.

brane current per unit length of fiber, īm(z), is calculated as2

īm(z) =
σiπd

2

4

d2V (z)

dz2
[µA/mm] (6.3)

where σi is the intracellular conductivity [S/m], d is the fiber diameter [mm], and
V (z) is the intracellular potential [mV] as a function of the distance z [mm] from
the depolarization point.

When the transmembrane current īm(z) in (6.3) moves to the left with the
fiber’s conduction velocity c, see Figure 6.2, the temporal transmembrane current
ic(t) may be observed at the point z = 0 according to

ic(t) = īm(ct) =
σiπd

2

4

d2V (z)

dz2

∣∣∣∣
z=ct

[µA/mm] . (6.4)

Following [62] to evaluate the expression (6.4), we adopt a simple model of the
intracellular potential and its second derivative, see Figure 6.3,

V (z)
4
= 768z3e−2z − 90 [mV], z ≥ 0 (6.5)

d2V (z)

dz2
= 768(6z − 12z2 + 4z3)e−2z [mV/mm2] . (6.6)

Inserting (6.6) into (6.4) and applying the Laplace transform, the sought trans-
membrane current in the frequency domain, Ic(s), is

Ic(s) = L{ic(t)} = 768
σiπd

2

4

6cs2

(s+ 2c)4
. (6.7)

2The deviation from the volume conductor model is around one percent [5].
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As is generally accepted, we assume a linear relationship between conduction
velocity and fiber diameter, using a relation proposed in [62]

c
4
= 3.7 + 50(d− 55 · 10−3) [m/s] . (6.8)

6.1.2 The temporal weighting function

The temporal weighting function wc(t) corresponding to Wc(s) in (6.2) is derived
from the spatial weighting function w̄(z), here assumed known. The function w̄(z)
is electrode dependent and describes the potential produced by a unit current source
located on a straight line at a certain radial distance, see Section 6.3.

The potential recorded by the electrode is then the spatially weighted sum-
mation of the time dependent transmembrane current distribution along the fiber
weighted by the spatial weighting function w̄(z), see Figure 6.2. Denoting the
time-space distribution of the transmembrane current by ξ(t, z), the recorded AP
φc(t) is

φc(t) =

∫ ∞

−∞
w̄(z)ξ(t, z)dz . (6.9)

The current distribution ξ(t, z) is derived by first extending ic(t) in (6.4) to include
all points along the fiber and not only z = 0. After this, the effects of the finite
length of the muscle fiber are considered.

Figure 6.2 shows ξ(t, z) graphically where two transmembrane currents are
generated at the motor end plate and move in opposite directions with a constant
velocity c. The transmembrane current that moves in the forward direction (in-
creasing z) is denoted if (t, z) and the transmembrane current that moves in the
reverse direction (decreasing z) is denoted ir(t, z). Both currents vanish at the
fiber endings where the depolarization regeneration ceases. Obviously, these two
functions may be formulated as

if (t, z) = ic

(
t− z

c

)
, 0 ≤ z ≤ zf (6.10)

ir(t, z) = ic

(
t+

z

c

)
, zr ≤ z ≤ 0 (6.11)

where both if (t, 0) and ir(t, 0) are equal to ic(t) in accordance with (6.4).
To obtain the final expression of ξ(t, z), the constraints in (6.10) and (6.11)

are removed by using the Heaviside function θ(·). Moreover, any possible end
effects taking place in the discontinuities at the motor end plate and at the two fiber
endings, respectively, are considered. Therefore, the time-space distribution of the
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transmembrane current ξ(t, z) is defined as

ξ(t, z)
4
= if (t, z)(1 − θ(z − zf ))

+ ir(t, z)(1 − θ(−z + zr))

+ ψ0(t)δ(z)

+ ψ1(t)δ(z − zf )

+ ψ2(t)δ(z − zr) (6.12)

where the ψi(t):s, i = 0, 1, 2, account for the discontinuities.
To obtain the temporal weighting function wc(t), and hence Wc(s) in (6.2),

(6.12) may be used to expand (6.9) through the substitution z = ct, see Ap-
pendix 6.A. Then, the measured potential φc(t) turns out to be a convolution be-
tween the transmembrane current ic(t) and the desired temporal weighting function
wc(t) according to

φc(t) = ic(t) ∗ wc(t)
4
=

∫ ∞

0
wc(τ)ic(t− τ)dτ . (6.13)

Through the derivation ofwc(t), one actually obtains one weighting function in
each direction,wf (t) andwr(t), because if (t, z) is affected by w̄(z) for z ≥ 0 only
and ir(t, z) is affected by w̄(z) for z ≤ 0 only, see Appendix 6.A and Figure 6.4.
For interpretational reasons, see below, this division is kept throughout this paper.
The two functions are related to wc(t) as

wc(t)
4
= wf (t) + wr(t) (6.14)

wf (t) = c(w̄(ct) − w̄(0))(1 − θ(t− τf ))

+ c(w̄(zf ) − w̄(0))θ(t− τf ) (6.15)

wr(t) = c(w̄(−ct) − w̄(0))(1 − θ(t− τr))

+ c(w̄(zr) − w̄(0))θ(t− τr) (6.16)

τf =
zf
c

; τr =
−zr
c

. (6.17)

Owing to the division of the weighting function, an intuitive interpretation of
the transformation of a spatial weighting function w̄(z) to a temporal weighting
function wc(t) is possible as follows, see Figure 6.2 and Figure 6.4. The spatial
weighting function w̄(z) is translated vertically so that it is zero at the motor end
plate (w̄(0) + const = 0). Then, the value at each fiber ending is extrapolated to
infinity (w̄(z) = w̄(zf ) ∀z ≥ zf , w̄(z) = w̄(zr) ∀z ≤ zr). The part to the left of
the motor end plate ({w̄(z) : z < 0}) is “folded” to the right and added to the part
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Figure 6.4: Example of a temporal weighting function in the forward wf (t) and
the reverse wr(t) directions for a point electrode at a radial distance of 1 mm. The
conduction velocity is set to 3.7 m/s and the length of the muscle fiber is 100 mm.
Due to the non-centered end plate position, the arrival times (τf and τr) at the
fiber tendon differ. Note that each weighting function is constant for t > τf , and
t > τr, respectively.

to the right of the motor end plate ({w̄(z) : z > 0}). The transformation is then
completed by the substitution z = ct.

The temporal weighting function Wc(s) in the frequency domain is then ob-
tained by taking the Laplace transform of the weighting function wc(t) in (6.14)

Wc(s) = c

(
L{(w̄(ct) − w̄(0))(1 − θ(t− τf ))}

+ (w̄(zf ) − w̄(0))
1

s
e−τf s

+ L{(w̄(−ct) − w̄(0))(1 − θ(t− τr))}

+ (w̄(zr) − w̄(0))
1

s
e−τrs

)
. (6.18)

This concludes the derivation of the continuous-time representation of a mea-
sured AP. This representation is most useful for understanding the underlying rela-
tions of the AP generation. For simulations and signal processing, it is convenient
to use the discrete-time representation derived next.
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6.2 A discrete-time model

In this section a discrete-time representation of the line source model is derived
through impulse-invariant discretization (sampling) of the continuous-time model
(6.1). This approach is straight-forward and well known [63] [26]. Using a dis-
cretization interval T , the discrete-time model may be written as

φ(n) = W (q)I(q)x(n) (6.19)

where φ(n) is the discretized potential (≈ φc(nT )), q is the forward shift operator
(qx(n) = x(n + 1)), W (q) is the electrode dependent weighting function, I(q)
models the transmembrane current, and x(n) is the impulse train delivered by the
axon.

To avoid aliasing when discretizing the continuous-time model functions, the
Nyquist criterion has to be fulfilled for these functions. The aliasing issues, how-
ever, have not been addressed properly in the literature. When addressed, it has
been the bandwidth of the resulting AP that has been considered in the Nyquist
criterion. This is not correct because, in the discrete-time line source model, the
transmembrane current and the weighting function are discretized prior to the con-
volution that generates the resulting AP. In essence, the discrete-time AP should
not be regarded as sampled since it is generated in discrete time directly. As shown
in Section 6.4.2, the transmembrane current has a significant high-frequency con-
tent that cannot be seen in the resulting AP.

The most important consequence of the aliasing is the appearance of a static
error in the resulting AP. When modeling entire MUs with as many as 500 fibers
or even more, it is very important that the static errors are vanishingly small. Even
small magnitude errors can, in such a case, be amplified to a dominant source of
error. This in combination with the demand for fast simulations causes a tradeoff
between accuracy and low discretization frequency.

By properly addressing these issues, a discrete-time model is possible to derive
that is optimized for accurate and computationally efficient computer based mod-
eling of muscle fiber APs. Our approach, obvious when sampling real signals, is
to use anti-aliasing prefiltering within the model, which allows significantly lower
discretization frequencies. To understand this, assume, for example, that we have
an AP with a 5 kHz bandwidth. In general, this corresponds to a transmembrane
current with a bandwidth of 20 kHz and a weighting function with a bandwidth
of 5 kHz. Hence, despite the bandwidth of the AP being 5 kHz in this example,
aliasing-free discretization requires a discretization frequency of 40 kHz. Using an
anti-aliasing filter to remove the excess bandwidth of the transmembrane current,
the discretization frequency may be lowered by as much as a factor four to 10 kHz.
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Figure 6.5: A block diagram of the discretized model.

This indicates that the anti-aliasing filter improves the efficiency while retaining
the accuracy.

The anti-aliasing filter has to be implemented in the continuous-time model,
however, and the filtered model is then discretized to obtain the final discrete-time
model, see Fig 6.5. We shall use a Bessel filter of the second order as an anti-
aliasing filter, see Appendix 6.B.

6.2.1 The transmembrane current model

After prefiltering the continuous-time transmembrane current (6.4) using an anti-
aliasing filter, the actual discretization of the resulting continuous-time model is
straight-forward. We derive the discrete-time transmembrane current per unit length
of fiber, i(n), through impulse-invariant discretization of the prefiltered analog us-
ing a discretization interval T as described by

i(n) =
σiπd

2

4

d2VH(z)

dz2

∣∣∣∣
z=cnT

[µA/mm] (6.20)

where d2VH(z)
dz2 is given in Appendix 6.B.

By taking the Z-transform of (6.20), the impulse-invariant discretization of the
transmembrane current per unit length of fiber in the frequency domain is obtained,
see Appendix 6.C.

6.2.2 The weighting function model

As mentioned above, the weighting function has the lowest bandwidth (similar to
the bandwidth of φ(n)) of the two generating model functions. This means that if
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the discretization frequency is sufficiently high to accomodate the bandwidth of the
continuous-time AP, the aliasing errors in the discretization of the weighting func-
tion is small. Since this is the normal case, no anti-aliasing filter for the weighting
function is presented. The discrete-time weighting function is then directly de-
rived through impulse-invariant discretization of the continuous-time model wc(t)
in (6.14) using a discretization interval T as described by

w(n) = wc(t)|t=nT [kΩm/s] . (6.21)

To find the frequency domain weighting function W (ζ) corresponding to the
continuous-time Wc(s) in (6.18), we approximate the continuous time shift e−τs

with q−k where k is the number of samples approximating the time shift τ . The
weighting function Wc(s) is thus in discrete time approximated with

W (ζ) = c

(
Z {(w̄(cnT ) − w̄(0))(1 − θ(cnT − τf ))}

+ (w̄(zf ) − w̄(0))
1

ζ − 1
ζ−k1

+ Z {(w̄(cnT ) − w̄(0))(1 − θ(cnT − τr))}

+ (w̄(zr) − w̄(0))
1

ζ − 1
ζ−k2

)
. (6.22)

6.3 Electrode characteristic weighting functions

In the simulations, see Section 6.4, we present the performance of the line source
model. Here we recapitulate the weighting functions of the three most common
electrodes. These were assumed known in Section 6.1 and 6.2.

The physical dimensions of standard single fiber (SF), concentric needle (CN),
and Macro electrodes are listed in Table 6.1.

6.3.1 Impedance of a point electrode

In an infinite medium with cylindrical anisotropy, a current source ιg located at the
origin produces a potential φ(x, y, z) in a point electrode positioned at (x, y, z),
see Figure 6.1, by [5] [63]

φ(x, y, z) = Z(x, y, z)ιg (6.23)

Z(x, y, z) =
1

4πσr

1√
K(x2 + y2) + z2

[kΩm/s] (6.24)

where Z(x, y, z) is the impedance of the point electrode, σr is the radial conduc-

tivity, σz is the axial conductivity, and K
4
= σz

σr
is the anisotropy ratio.
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Table 6.1: Electrode specifications

Description Parameter Value

Needle radius Rn [mm] 0.225

Needle inner radius Re [mm] 0.150

CN core radius Rc [mm] 0.075

CN recording angle θCN [rad] π
12

CN cannula length LCN [mm] 20

Macro cannula length LM [mm] 15

SF core radius RSF [mm] 0.0125

SF recording position xSF [mm] 1
2LM

6.3.2 The electrode weighting functions

Assuming that a muscle fiber may be approximated by a straight and cylindrical
entity, and that the potential produced in a particular electrode is the average of the
potential present on the recording surface, the following three models were derived:
the Macro electrode, the SF electrode, and the CN electrode. The latter two are
bipolar and use the cannula as reference. More accurate models exist [66] [92], but
their complexity and computational demand often outweigh their improvement in
accuracy.

The three weighting functions below are derived using the electrode specifi-
cations listed in Table 6.1 and assuming the electrode is held perpendicular to the
fiber.

The macro electrode and the cannula reference

Approximating the cylindrical recording surface with a thin wire of length L, the
weighting functions of the Macro electrode (L = LM) and the concentric needle
cannula (L = LCN) are the average over its length [40] [61], see Fig 6.6. For the
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Figure 6.6: The Macro electrode and the cannula of the CN electrode are approxi-
mated by a wire (thick line) of length L = LM and L = LCN, respectively. The left
end of the wire is at the position (rx, ry). The muscle fiber is perpendicular to the
needle and located at the origin.

Macro electrode, we thus obtain

w̄M(z)
4
=

1

LM

∫

LM

Z dL (6.25)

=
1

4πσr

√
KLM

ln

√
(rx + LM)2 +B + rx + LM√

r2x +B + rx
[kΩm/s] (6.26)

with B = r2y + 1
K (z − z0)

2.
The weighting function, w̄CNc(z), of the CN electrode cannula is calculated

analogously using

w̄CNc(z)
4
=

1

LCN

∫

LCN

Z dL . (6.27)

The single fiber electrode

The active surface of the SF electrode is located in a side port 7.5 mm from the tip
of the electrode. Neglecting the so-called wall effect [62], the weighting function of
the active surface is approximated by a single point due to its dimunitive dimension
as described by

w̄SFa(z)
4
= Z(−(rx + xSF),−(ry +Rn), z − z0) (6.28)

=
1

4πσr

√
Kr2 + (z − z0)2

[kΩm/s] (6.29)

where r =
√

(rx + xSF)2 + (ry +RSF)2 is the radial distance translated by the
off-tip position of the SF core, see Table 6.1.
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The final weighting function of the bipolar SF electrode is

w̄SF(z)
4
= w̄SFa(z) − w̄M(z) . (6.30)

The concentric needle electrode

Approximating the surface of the central core of the CN electrode by 2Nc + 1 par-
allell wires, see Figure 6.7, the weighting function, w̄CNa(z), of the active surface
of the CN electrode is [63]

w̄CNa(z)
4
=

1

S

∫∫

S
Z dS (6.31)

≈ 1

2Nc + 1

Nc∑

k=−Nc

1

8πσr

√
K∆uk

ln

√
(ru + ∆uk)2 +Bk + ru + ∆uk√
(ru − ∆uk)2 +Bk + ru − ∆uk

[kΩm/s] (6.32)

Bk = r2v +
1

K
(z − (∆zk + z0))

2 (6.33)

∆zk = Rc
k

Nc + 1
, k = −Nc, . . . , Nc (6.34)

∆uk =
Rc

sin(θCN)
cos(arcsin(

k

Nc + 1
)) (6.35)

ru = rx cos θCN + ry sin θCN (6.36)

rv = −rx sin θCN + ry cos θCN (6.37)

where θCN is the angle of the beveled tip of the CN electrode.
The weighting function of the bipolar CN electrode is [60]

w̄CN(z)
4
= w̄CNa(z) − w̄CNc(z) . (6.38)

6.4 Simulation results

In this section, the characteristics of the model is visualized through simulations.
We present some sample APs, the frequency distribution and bandwidth of the
model components, different aliasing effects, and the positional dependence of the
AP shape. In all simulations, unless stated differently, the parameter settings used
are found in Table 6.2.
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Figure 6.7: The core of the CN electrode is approximated by five parallel wires
(thick lines). To simplify the calculations, an alternate coordinate system (u, v)
is introduced. It is rotated by the angle θCN and the u-axis is parallel with the
recording surface on the beveled tip of the CN electrode.

Table 6.2: Line source model parameters for simulations

Description Parameter Value

Fiber diameter d [mm] 55 · 10−3

Conduction velocity c [m/s] 3.7

Radial distance r [mm] 0.1

Axial distance z0 [mm] 20

Filter cut-off frequency f0 [kHz] 5.8

Intracellular conductivity σi [S/m] 1.01

Axial conductivity σz [S/m] 0.33

Radial conductivity σr [S/m] 0.063

CN core approximation size Nc 2

6.4.1 Action potential simulation

The most time-consuming part of the line source model evaluation is the convolu-
tion of the transmembrane current and the electrode characteristic weighting func-
tion. For fast evaluation of the convolution, it is calculated in the frequency domain
via the FFT algorithm [62]. When doing that, both the weighting function and the
transmembrane current must be discretized using the same discretizing frequency
and must be padded with zeroes to their double length. The latter operation is to
avoid circular convolution. After taking the inverse FFT, the resulting potential is
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Figure 6.8: Simulations of an AP as recorded with (a) the SF electrode (SFAP),
(b) the CN electrode (CNAP), and (c) the Macro electrode (Macro AP). Note the
different scale of the Macro AP. The SF recording yields the highest amplitude,
whereas the peak-to-peak rise time is about the same, see text.

truncated to the length of the original vectors.
In Figure 6.8 three APs calculated using this technique are shown. Each is a

sample of an AP recorded by the SF electrode (SFAP), the CN electrode (CNAP),
and the Macro electrode (Macro AP), respectively. As expected, the SFAP has the
largest amplitude and the most pronounced phases. Moreover, the peak-to-peak
rise time is the same for the SFAP and the CNAP. The rise time is slightly larger
for the Macro AP because the radius of the needle forces a longer distance between
the fiber and the electrode.

6.4.2 Frequency distribution

As stated in Section 6.2, the large bandwidth of the transmembrane current com-
plicates the choice of discretization frequency because the Nyquist criterion cannot
be applied to the AP. Instead, the bandwidth of the transmembrane current and the
weighting function introduce constraints on the needed discretization frequency.

As a guide for selecting the correct discretization frequency, the normalized
cumulative power (NCP), %(f), is defined as

%(f)
4
=

1∫∞
0 P (ν)dν

∫ f

0
P (ν)dν (6.39)

whereP (ν) is the power spectrum of the function under consideration, e.g., P (ν) =
|I(j2πν)|2 for the transmembrane current.

In Figure 6.9 the NCP is shown for the transmembrane current and the weight-
ing functions. With the NCP of a SFAP included in the figure, the bandwidth
difference, as stated in Section 6.2, of the transmembrane current and the resulting
AP is clear.3 In Figure 6.9 (a) we note that, compared to the resulting AP, the trans-

3The SFAP is selected for inclusion because it has the highest bandwidth of the three AP types.
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Figure 6.9: (a) The normalized cumulative power (NCP) plot of a transmembrane
current both with (dashed) and without (solid) the use of an anti-aliasing Bessel
filter. For comparison, the NCP of a SFAP is included (dotted). As can be seen,
the unfiltered transmembrane current has substantially more power at higher fre-
quencies compared to the resulting AP.
(b) The NCP plot of the weighting functions of a SF electrode (solid), a CN elec-
trode (dashed), and a Macro electrode (dash-dotted). For comparison, the NCP of
a SFAP is included (dotted). Obviously, all four have their power concentrated to
low frequencies.

membrane current has a slower increase in the NCP. This means that its spectrum
has a slower rolloff, i.e., longer “tails”. The bandwidth decrease and the rolloff
improvement of the transmembrane current when applying the anti-aliasing filter
is significant. The anti-aliasing filter thus decrease the Nyquist frequency, i.e., half
of the required discretization frequency, substantially.

Figure 6.9 (b) shows that both bandwidth and rolloff of the weighting func-
tion of the SF electrode and the SFAP are similar. The CN electrode bandwidth
is slightly lower and the Macro electrode bandwidth is significantly lower. There-
fore, it should be sufficient to low-pass filter the transmembrane current only in
order to avoid aliasing while using a discretization frequency equal to the sampling
frequency of real APs.

The most important usage of the NCP is to calculate the frequency below which
a certain amount of the power is found. We call this frequency the cumulative cut-
off frequency (CCF) and it is defined as

ςγ
4
= ν : [%(ν) = γ] , 0 ≤ γ ≤ 1 (6.40)

where γ = 0.999 has shown to provide a reasonable estimate of the required
Nyquist frequency.

Using the CCF, it is evident that the Nyquist frequency must not be set ac-
cording to the bandwidth of the resulting AP. For example, a SFAP with ς0.999 =
4.2 kHz may correspond to a transmembrane current with ς0.999 = 18 kHz. If
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Figure 6.10: The CCF, ς0.999, below which 0.999 of the total power is found, of the
transmembrane current plotted as a function of fiber diameter, and consequently,
as a function of conduction velocity. As shown, the CCF is lowered considerably
when the anti-aliasing Bessel filter is used (dashed) as compared to the non-filtered
transmembrane current (solid).

the Nyquist frequency of the discretization were set by the bandwidth of the re-
sulting AP, considerable aliasing would occur if no anti-aliasing filter was used.
This is particularly important when simulating entire MU potentials acquired with
a Macro electrode because the aliasing errors are “amplified” due to the summed
contribution from each fiber [61].

Using the Bessel filter, the ς0.999 = 8.8 kHz suggesting that a discretization
frequency of 20 kHz is sufficient to avoid aliasing.

From (6.7) it is apparent that the bandwidth is increased when the conduction
velocity increases. Due to the relation between the fiber diameter and conduction
velocity, see (6.8), the bandwidth depends on the fiber diameter as well. This
dependence is shown in Figure 6.10, where the CCF, ς0.999, of the transmembrane
current is plotted as a function of fiber diameter in the range 25 µm to 85 µm.4

All three weighting functions in Figure 6.9 (b), have their power localized to
low frequencies. For the SF electrode ς0.999 = 5.9 kHz, for the CN electrode
ς0.999 = 4.3 kHz, and for the Macro electrode ς0.999 = 0.74 kHz. In Figure 6.11,
ς0.999 of the three weighting functions are shown when the radial distance ranges
from 0.05 mm to 2.5 mm. The conduction velocity dependence is visualized with
a shaded region where the conduction velocity ranges from 2.2 m/s to 5.2 m/s.
The results in the figure suggest that a discretization frequency of about 20 kHz is
sufficient in all cases except when using the SF electrode at small radial distances.
In these cases, however, the errors are small compared to the AP and may normally
be neglected.

4Consequently, conduction velocity ranges from 2.2 m/s to 5.2 m/s.
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Figure 6.11: The CCF, ς0.999, below which 0.999 of the total power of the weight-
ing functions of (a) a SF electrode, (b) a CN electrode, and (c) a Macro electrode
is found plotted as a function of radial distance. As NCP frequency depends on
the conduction velocity as well, that dependence is shown as a shaded region (2.2-
5.2 m/s) where the conduction velocity 3.7 m/s is shown (solid). Note the different
scale of the Macro diagram.

6.4.3 Aliasing effects

In Figure 6.12, the aliasing effects are shown as a function of discretization fre-
quency. Note that these particular aliasing effects cannot be found in recorded
APs because these effects originate from the discretization of the transmembrane
current (mainly) and the weighting function. In recorded APs this never occurs
because the convolution takes place in continuous time and only the resulting AP
is discretized.

The normalized statical error (NE) in Figure 6.12 is the DC component due
to aliasing multiplied by a normalization factor. The normalization factor is the
radial distance divided by a nominal distance of 0.1 mm and accounts for the linear
increase of the number of muscle fibers with increasing radial distance.

The figure shows that the statical error is about a factor 100 smaller when the
anti-aliasing prefiltering is used compared to when not using it. It is clear from the
figure what advantage such a filter has to the discretization frequency requirements.

Moreover, the importance of the aliasing issues when simulating Macro APs is
clear. The NE is both larger for distant fibers and amplified due to the large number
of contributing fibers.

6.4.4 Action potentials recorded by a point electrode

As an example of how the shape of an AP may appear when recorded at different
radial and axial distances, Figure 6.13 shows a collection of APs simulated for a
single fiber with the recording electrode at different locations. Note how the APs
become smoother as the radial distance increases and how the shape and number
of phases change when the axial position changes.
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Figure 6.12: The figure shows the normalized statical error as a function of se-
lected sampling frequency for (a) the SF electrode, (b) the CN electrode, and
(c) the Macro electrode. The dependence of the fiber diameter (and conduction
velocity) is shown (top) as well as the dependence of the radial distance (bot-
tom). The fiber diameter ranges from 25 µm to 85 µm. The radial distance ranges
from 0.05 mm to the pick-up distance of each electrode (0.35 mm, 0.5 mm, and
1.45 mm, respectively). In all figures, the result is shown when no anti-aliasing
filter is used (solid) and when a second order Bessel filter is used (dashed). The
3.7 m/s and 0.1 mm values are plotted in each range. The NE increases if any of d
or r increases.

6.5 Discussion

Insights into the line source model were presented using a signal processing ap-
proach. With this perspective, several improvements to the original model were
possible to derive. The two most important of these are the anti-aliasing filter and
the finite-length adjustment.

Regarding the anti-aliasing filter, there has been little attention in the the liter-
ature to the aliasing issues when discretizing the model. The referrals made have
incorrectly considered the resulting AP in the Nyquist criterion. In this paper,
we showed that this may lead to significant aliasing because the bandwidth of the
transmebrane current is in general much higher than the bandwidth of the resulting
AP.

We presented an approach where an anti-aliasing second order Bessel filter is
applied to the transmembrane current. This way the excess bandwidth is decreased
and may be used to speed up the simulations, improving the accuracy, or a mix
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Figure 6.13: The APs as they would be recorded by a point electrode at different
axial positions along and radial distances from a 100 mm long muscle fiber with
its motor end plate located in the middle. The axial positions are (left to right) 0,
0.2, 0.4, 25 and 50 mm. The radial distances are (top to bottom) 0.05, 0.1, 0.5,
and 1 mm. The second last row is enlarged 10 times, and the last row is enlarged
50 times.

of these. Simulations were used to analyze the aliasing effects and to show the
improvements the anti-aliasing filter offers.

Regarding the finite length of the muscle fibers, we presented a simple adjuste-
ment to the electrode specific weighting function that improves the efficiency of the
simulations by allowing the generated AP being described by a single convolution
operation.

Also presented were sample APs using the three common electrode types: the
SF electrode, the CN electrode, and the Macro electrode. Moreover, we presented
a transfer function representation of the transmembrane current that makes it pos-
sible to use sophisticated signal processing methods on the EMG signal.

The derived model seems to be reasonably accurate with respect to real APs
[53]. In [41] the APs from a single MU were simulated using a similar model
with good agreement between simulations and measurements. The simulations
carried out with our model correspond well with what medical experise consider
an accurate result. This, in combination with the results in [41] makes us confident
of the accuracy of the model.
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Despite this, there are some aspects of the line source model that need further
comments. First, the used intracellular potential is based on a single work pre-
sented in 1969 [70] and its accuracy is not fully known. Several variants of this
potential have been used, e.g., [62] and [39], suggesting there are some imperfec-
tions. Second, the volume characteristics is not fully known and the values used for
the radial, axial, and intracellular conductivity are uncertain. Third finally, decreas-
ing the conduction velocity while keeping the diameter constant does not increase
the amplitude as expected. Experience has shown, however, that these deficiencies
are in most cases negligible.

Instead, the advantages of using this model in this paper are numerous and
here we mention two. First, the line source model is computationally fast and
is well suited for simulations of large number of fibers and even entire muscles.
Such simulations may contribute to a deeper understanding of the correspondance
between the EMG signal and the different neuromuscular disorders. This would
improve both research and education as well as clinical work. Second, an anti-
aliasing filter is incorporated in the model of the membrane current. With this
filter, the discretization frequency may be lowered without affecting the accuracy,
and hence, further improving the computational speed.

In conclusion, the presented line source model is well suited for fast and accu-
rate AP simulations. With the transfer function formalism of the transmembrane
current, an “electrical biopsy” is conceivable. In the near future, the model will be
used for simulating MUs as well as entire muscles. A simulation tool [53] is under
development and has already shown to be very promising.
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Appendix 6.A Derivation of the temporal weighting func-
tion

The time-space distribution of the transmembrane current ξ(t, z) is defined in
(6.12). To solve for the end effects ψi(t), we use that the average transmembrane
current along the fiber should be equal to zero [38]. Therefore,

0 =

∫ ∞

−∞
ξ(t, z)dz (6.41)

=

∫ zf

0
if (t, z)dz +

∫ 0

zr

ir(t, z)dz

+ ψ0(t) + ψ1(t) + ψ2(t) . (6.42)

To solve (6.42), two observations are made. First, an end effect is local in its
nature. Second, as such, it should be independent of fiber properties at a remote
location. The three end effects should thus depend on the end plate position, the
first fiber ending, and the second fiber ending, respectively.

By extending (6.42), the integrals may be written as

0 =

∫ ∞

0
if (t, z)dz −

∫ ∞

zf

if (t, z)dz

+

∫ 0

−∞
ir(t, z)dz −

∫ zr

−∞
ir(t, z)dz

+ ψ0(t) + ψ1(t) + ψ2(t) . (6.43)

With the observations above, we then conclude that5

ψ0(t) = −
∫ ∞

0
if (t, z)dz −

∫ 0

−∞
ir(t, z)dz (6.44)

ψ1(t) =

∫ ∞

zf

if (t, z)dz (6.45)

ψ2(t) =

∫ zr

−∞
ir(t, z)dz . (6.46)

The final AP is obtained by summing all contributions along the fiber using the

5An equivalent result may be obtained by applying Kirchoff’s laws to the core conductor model
or by taking the approach described in [26].
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weighting function w̄(z) of the measuring electrode

φc(t) =

∫ ∞

−∞
w̄(z)ξ(t, z)dz (6.47)

=

∫ zf

0
w̄(z)if (t, z)dz +

∫ 0

zr

w̄(z)ir(t, z)dz

+ w̄(0)ψ0(t) + w̄(zf )ψ1(t) + w̄(zr)ψ2(t) . (6.48)

Inserting ψi(t) from (6.44)-(6.46), if (t, z), and ir(t, z), we can develop the
expression further. Then, we set z = cτ and obtain

φc(t) = c

∫ τf

0
(w̄(cτ) − w̄(0))ic(t− τ)dτ

+ c

∫ τr

0
(w̄(−cτ) − w̄(0))ic(t− τ)dτ

+ c(w̄(zf ) − w̄(0))

∫ ∞

τf

ic(t− τ)dτ

+ c(w̄(zr) − w̄(0))

∫ ∞

τr

ic(t− τ)dτ (6.49)

where

τf =
zf
c

; τr =
−zr
c

. (6.50)

Appendix 6.B A Bessel filter as an anti-aliasing filter

Discretizing the second derivative of the intracellular potential, d2V (z)/dz2|z=ct,
in (6.6), setting t = nT , may yield aliasing. By using an anti-aliasing filter, how-
ever, this can be reduced. A second order, pole only filter may be written in the
frequency domain on the form

H(s) =
a2

2

s2 + a1s+ a2
2

(6.51)

where the coefficients ai determine the filter characteristics.
Applying the filter H(s) in (6.51) to the second derivative of the intracellular

potential d2V (z)/dz2|z=ct we obtain in the frequency domain

L
{
d2VH(z)

dz2

∣∣∣∣
z=ct

}
= L

{
d2V (z)

dz2

∣∣∣∣
z=ct

}
H(s) (6.52)

= 768
6cs2

(s+ 2c)4
a2

2

s2 + a1s+ a2
2

. (6.53)
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Taking the inverse Laplace transform, the filtered second derivative of the in-
tracellular potential in the time domain is

d2VH(z)

dz2
= 2304a2αv

(z
c

)
(6.54)

v(t) = C0e
−αt + C1te

−αt

+
1

2
C2t

2e−αt +
1

6
C3t

3e−αt

+

(
A cos(βt) +

B − 1
2a1A

β
sin(βt)

)
e−

a1
2

t, t ≥ 0 (6.55)

where

α = 2c ; γ = α2 − a1α+ a2 (6.56)

C0 =
a1α

4 − 4a2α
3 + 4a2

2α− a1a
2
2

γ4
(6.57)

C1 =
a1α

3 − 3a2α
2 + a2

2

γ3
(6.58)

C2 =
a1α

2 − 2a2α

γ2
(6.59)

C3 =
α2

γ
(6.60)

A = −C0 ; B = (α− a1)C0 − C1 (6.61)

β =

√
a2 −

1

4
a2

1 . (6.62)

A Bessel filter with cut-off frequency f0 is given by

ω = 1.27 ; ζ = 0.87 (6.63)

ωB = 2πf0 [krad/s] (6.64)

a1 = 2ζωωB [krad/s] (6.65)

a2 = ω2ω2
B [krad2/s2] . (6.66)

Appendix 6.C The discrete-time transmembrane current
in the frequency domain

When using a sufficiently high discretization frequency, the aliasing errors are neg-
ligible. By direct impulse-invariant discretization of (6.4) and (6.6), the discrete-
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time transmembrane current in the frequency domain through the Z-transform is

I(ζ) = 768
σiπd

2

4

cT (6 − 12cT + 4c2T 2)e−2cT ζB(ζ)

(ζ − e−2cT )4
(6.67)

where the monic second-degree polynomial B(ζ) have the roots

ζ1,2 =
6 − 4(2 ±

√
3)c2T 2

6 − 12cT + 4c2T 2
e−2cT . (6.68)

Often, however, an anti-aliasing filter is needed. In this case, I(ζ) is acquired
by taking the Z-transform of (6.20), which yields

I(ζ) = 2304a2α
σiπd

2

4

(
C0

ζ

ζ − e−αT

+ C1Te
−αT ζ

(ζ − e−αT )2

+
1

2
C2T

2e−αT (ζ + e−αT )ζ

(ζ − e−αT )3

+
1

6
C3T

3e−αT (ζ2 + 4e−αT ζ + e−2αT )ζ

(ζ − e−αT )4

+
B − 1

2a1A

β

ζe−
a1
2

T sinβT )

ζ2 − 2ζe−
a1
2

T cosβT + e−a1T

+A
(ζ − e−

a1
2

T cosβT )ζ

ζ2 − 2ζe−
a1
2

T cosβT + e−a1T

)
(6.69)

where the coefficients are as in Appendix 6.B.



CHAPTER 7

Simulation of compound action potentials of a motor unit

THE smallest functional unit of a muscle is called a motor unit (MU). It is con-
stituted by a set of muscle fibers, their innervating motoneuron in the spinal

cord, and the interconnecting myelinated axon [85].
Simulating compound APs of a MU is thus obtained by summating individual

muscle-fiber APs with respect to the selected recording electrode [53]. A virtual
MU is constructed in compliance with anatomical knowledge and by the use of
the line source model, c. f. Chapter 6. The simulation is fast and the resulting
compound AP corresponds well to real recordings. A straight-forward three-step
procedure may be designed as follows.

First, a MU with the appropriate number, diameter, distribution, etc, of muscle
fibers is generated in accordance with the anatomic conditions to study. Then, the
electrode selected for the investigation is imaginally inserted into the generated
MU where the “ploughing effect” of the beveled tip is taken into account. Finally,
the line source model is applied to each muscle fiber and their contributions are
added to form the compound AP.

This chapter is organized to describe these steps in some detail and to show
samples of simulated compound APs of different MUs. In Section 7.1, the anatomy
of a normal MU is discussed as well the changes induced by disease. Section 7.2
presents the assumptions made regarding the insertion of the electrode. The line-
source model is briefly summarized in Section 7.3. Finally, Section 7.4 presents
sample simulation results.

127
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7.1 Generating the MU

To generate realistic MUs and their compound APs, it is important that the consti-
tution of the modelled MU reflects the constitution of real MUs. Below, the most
fundamental aspects are presented along with the assumptions used in this thesis.

Depending on muscle, the fibers within each MU may be about 10 to nearly
2000 (typically a few hundred) in number [82] and randomly distributed in a cross
section of about 2-10 mm in diameter [81]. The fiber diameters range from 5 to
90 µm where the mean diameter depends on muscle [25, pp. 475]. The conduction
velocity depends on the fiber diameter and is of the order 1.5-6.5 m/s [78]. For
bipennate muscles, the endplates are located in well-defined zones [7] whereas a
more complex pattern is observed in multipennate muscles. The standard deviation
of the variability in the delay of an individual motor endplate is ranging between 5
and 40 µs [86].

The total number of fibers and the total area of the MU are related through
the mean fiber concentration (MFC) that specify the number of fibers found, on
average, in an area of one square millimeter. In a normal and healthy muscle the
MFC is about 5 fibers/mm2 [83].

The default parameters used in this thesis are presented in Table 7.1.

Table 7.1: Default MU parameters

Description Value

Diameter of MU territory 6 mm

Number of muscle fibers 141

MFC 5 fibers/mm2

Diameter distribution (Gaussian), mean 55 µm

Diameter distribution (Gaussian), SD 3 µm

Endplate distribution (Rectangular), mean 0 mm

Endplate distribution (Rectangular), range ±1 mm

Jitter distribution (Gaussian), mean 0 µs

Jitter distribution (Gaussian), SD 15 µs
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7.1.1 Testing the model

The model has been tested in a number of ways in order to assess its functionality
and its similarity with real EMG recordings. The performance seems to be ex-
cellent as reported in [83] and [84]. The obtained signals are reasonably realistic,
and certainly sufficiently similar to real recordings to be used to study relationship
between muscle parameters and recorded signals.

7.1.2 Changes in disease

The number of muscle fibers in a given MU is affected by disease. It may decrease
in primary muscle disorders, or it may increase as a compensatory phenomenon
when individual axons disappear due to nerve damage. Surviving axon then pro-
duce new branches and contact those muscle fibers that have lost contact with the
original nerve axon. Thus, both the number and the cross-sectional distribution of
the muscle fibers within a particular MU change with disease [85].

The changes in neuromuscular disorders may be divided into three basic cate-
gories:

Myopathies These diseases cause a loss or impairment of muscle fibers. In gen-
eral the number of fibers within the MU decrease and fat or fibrous tissue is
increased. There is an increased fiber diameter variation, generation of new
fibers, and sometimes longitudinal splitting of muscle fibers.

Neuropathies These diseases cause a loss of motoneurons or axons. In a compen-
satory process, neighboring axons branch off and reinnervate the orphaned
muscle fibers through collateral sprouting. Hence, the number of MUs de-
creases but their size in terms of number of fibers increases. The individual
fibers may show an increased fiber diameter variation.

Neuromuscular junction diseases These diseases affect various key components
that are vital for the function of the MU. If, e.g., the acetylcholine receptors
in the motor endplate are reduced in number, the function of the muscle may
be severely impaired. This may cause the variability of the synaptic delay,
the jitter, to increase, or the triggering to sometimes fail, a condition called
impulse blocking.

As a rule of thumb, myopathies are manifested by small MUAPs and often the
components of the MUAPs are dispersed in time. Neuropathies are manifested by
large MUAPs with multiple peaks corresponding to the increased number of fibers.
The neuromuscular transmission diseases may often be diagnosed by the variation
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in the MUAP in consecutive discharges through studies of, e.g., the jitter and/or
the blocking.

Principally, the random distribution of the muscle fibers in normal, healthy
muscle become more and more grouped as the level of myopathy/neuropathy in-
creases. As shown in [84] parameters such as amplitude and area, for example,
depend linearly on the MFC both with random and grouped distribution, albeit
with a different slope coefficient.

Therefore, in order to simplify the simulations of myopathic/neurogenic MUs,
the muscle fibers are distributed randomly in the simulated MUs where only the
MFC reflects the level of myopathy/neuropathy. This seems to be a reasonable
simplification as long as only relative comparisons are being made.

7.2 Insertion of the electrode

The selected recording electrode, c. f. Section 6.3, is assumed to be inserted per-
pendicularly to the fiber direction. In real muscle, the beveled tip of the electrode
causes a ploughing effect that moves the fibers to the side. This is incorporated
into the model by moving the fibers situated in the area occupied by the electrode.

7.3 Applying the line-source model

The line-source model, c. f. Chapter 6, is applied to each fiber within the MU where
the position of the electrode with respect to each muscle fiber is considered. The
individual contributions are then summed to form the compound AP.

In this thesis, we neglect the so-called wall effect [27], observed as an amplifi-
cation of the AP amplitude in recordings with the SF electrode positioned close to
the fiber. The shadow effect, manifested by a decrease in amplitude and change of
shape of muscle fibers located on the back of the electrode (SF and CN electrodes
only) [88] is approximated by only summing the contribution from the muscle
fibers located in the semicircle in front of the active surface.

7.4 Simulations

As examples of how the model may be used, three sample MUs are generated in
this section. The MU parameters are in accordance with Table 7.1 except for the
MFC value that is different for each generated MU.

The MFC value was selected as 5, 2, and 10 fibers/mm2, to simulate a normal,
myopathic, and neurogenic MU, respectively. The CN electrode was selected as



7.4. Simulations 131

−2 0 2

−2

0

2

X axis [mm]

Y
 a

xi
s 

[m
m

]

(a)

4 6 8

−6

−4

−2

0

2

Time [ms]

A
m

pl
itu

de
 [m

V
]

(b)

Figure 7.1: A normal MU simulated with MFC = 5 fibers/mm2 and as if recorded
using a CN electrode. The diagrams show (a) the cross section of the MU with the
electrode inserted, and (b) the resulting MUAP as recorded by the CN electrode.
The radial distances 100, 300, and 500 µm are indicated by semicircles.

recording electrode.

7.4.1 A normal MU

Figure 7.1 shows a sample result from a simulation of a normal MU with MFC =
5 fibers/mm2. The selected CN electrode is shown inserted in the cross section of
the MU. The recording through the CN electrode produces a MUAP as shown in
the figure.

7.4.2 A myopathic MU

In Figure 7.2 a sample result from a simplified simulation of a myopathic MU
where MFC = 2 fibers/mm2. In a real myopathic MU, the diameter of the fibers
may change and even produce clusters of fibers through longitudinal splitting, see
Section 7.1.2.

The selected CN electrode is shown inserted in the cross section of the MU
and the resulting MUAP is shown in the figure. Note that the amplitude is reduced
compared to the normal MU.

7.4.3 A neurogenic MU

A sample result from a simplified simulation of a neurogenic MU is shown in
Figure 7.3 where MFC = 10 fibers/mm2. In a real neurogenic MU, the fibers are
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Figure 7.2: A simplified simulation of a myopathic MU where MFC =
2 fibers/mm2. The resulting compound AP is generated as if recorded by a CN
electrode. The diagrams show (a) the cross section of the MU with the electrode
inserted, and (b) the resulting MUAP as recorded by the CN electrode. The radial
distances 100, 300, and 500 µm are indicated by semicircles.

−2 0 2

−2
−1

0
1
2

X axis [mm]

Y
 a

xi
s 

[m
m

]

(a)

4 6 8

−6

−4

−2

0

2

Time [ms]

A
m

pl
itu

de
 [m

V
]

(b)

Figure 7.3: A simplified simulation of a neurogenic MU where MFC =
10 fibers/mm2. The resulting compound AP is generated as if recorded by a CN
electrode. The diagrams show (a) the cross section of the MU with the electrode
inserted, and (b) the resulting MUAP as recorded by the CN electrode. The radial
distances 100, 300, and 500 µm are indicated by semicircles.
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grouped in clusters as an effect of the reinnervation which also affects the jitter, see
Section 7.1.2.

The selected CN electrode is shown inserted in the cross section of the MU
and the resulting MUAP is shown in the figure. Note the increased amplitude as
compared to the normal MU as well as the extra peak at t = 6.5 ms. Note also the
clustering of fibers close to the cannula on its upper side which is a result of the
ploughing effect.

7.5 Discussion

A model for generating MUs and simulating the compound AP is presented. A
number of parameters corresponding to the constitution and function of the MU
may be changed in order to simulate normal and diseased muscle.

As shown in a related paper [84], the generated EMG signals obtained with the
three electrodes mentioned here are reasonably similar to the compound APs ob-
tained in real recordings. Expected changes in the signal is obtained when different
parameter values are manipulated. When it comes to the simulation of some patho-
logical situations, the model allows simulation of the most commonly encountered
situations [84].

To simplify the simulation of abnormal MUs in this presentation, only the MFC
value was changed to yield myopathic and neurogenic MUs. The validity of this
simplification is supported by the findings in [84] where parameters such as ampli-
tude and area, for example, depend linearly on the MFC both when appropriately
modeling the abnormal MU and when assuming a random distribution. The only
difference is the slope coefficient which should not matter as long as the model is
used for comparing relative differences only.

In the more elaborate study described in [84], this model has been used in
situations where fiber diameter varaition and grouped distribution of fibers have
been included as well.
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CHAPTER 8

Deconvolving motor unit action potentials

DIAGNOSIS of muscle and nerve disorders is often related to details in the
constitution and function of the motor unit (MU). The distribution and num-

ber of muscle fibers, for example, in a given MU are affected by disease [85] and,
hence, provides valuable information in this respect. Functional studies of the neu-
romuscular transmission is yet another example.

One way to retrieve this type of information is to extract a small piece of mus-
cle tissue for inspection in the microscope, so-called muscle biopsy. Another way,
less invasive, is to measure the electrical activity in the muscle, the so-called elec-
tromyogram (EMG), that is generated upon activation of the muscle.

Using a special recording electrode, the EMG may be retrieved and used as
input to a computer for signal processing and analysis. Depending on the electrode
used, see Chapter 6, different aspects and “resolutions” of the underlying informa-
tion is obtained [80].

The concentric needle (CN) electrode [1] [85] is used to acquire the so-called
motor-unit action potential (MUAP). The shape and amplitude of the MUAP re-
flects the number of muscle fibers, the synchronicity of the action potentials (APs),
and muscle fiber concentration within the pick-up distance. Much is known about
the relationship between the characteristics of the MUAP (shape, amplitude, etc)
and the underlying type of disorder [85]. With this knowledge, accurate diagnostic
methods have successfully been derived and are used in clinical routine throughout
the world.

The different approaches to improve the EMG signal for analysis may be di-
vided into two categories. In the first category, the characteristics of the electrode
is changed in order to “process” the EMG signal already in the muscle. The single

135
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fiber (SF) electrode [28] and the Macro electrode [79] are examples within this cat-
egory, and are used in different situations [80]. To further improve the EMG meth-
ods, alternative electrode types could be developed with, e.g., multiple recording
surfaces [100] and even with signal (pre-) processing integrated into the recording
electrode [49].

In the second category, signal processing is applied on the already recorded
signal. An obvious example in this category is filtering in order to reduce distur-
bances and irrelevant signal properties. A note of precausion is necessary here,
though. One important factor to have in mind is that the level of success of a sig-
nal processing method crucially depends on the quality of the recorded signal and,
hence, the prioritizations made in the first category. If information is lost during
the retrieval of the signal, it cannot be restored.

In this chapter we explore the possibility of discerning the individual AP com-
ponents of a MUAP acquired with the CN electrode. By doing this, the applica-
bility of CN EMG in clinical routine may be improved and widened. In particular,
we consider non-causal deconvolution filters with two different levels of deconvo-
lution where the partial deconvolution filter only takes the membrane properties
of the muscle fiber into account and produces a signal where each individual AP
component is transformed into a monophasic impulse that is strictly positive with
a single maximum. The full deconvolution filter takes the electrode characteristics
into account as well and produces a signal with narrow (monophasic) impulses,
one for each individual AP.

There are two main advantages of this approach. First, because the monopha-
sic signals effectively remedy the canceling that may occur in the original EMG
signal, we anticipate our approach to show an improved performance in estimat-
ing, e.g., the number of fibers or the mean fiber concentration (MFC), compared to
an approach using the original multiphasic signal. Second, we anticipate the fully
deconvolved signal to further contribute to this through its (possible) resolution
of individual fibers. This may be advantageous, not only for measuring MFC but
maybe also for jitter measurements.

This chapter pursues these issues further and is organized as follows. In Sec-
tion 8.1, the prerequisites for recording the EMG signal and obtaining the MUAPs
from the EMG signal are described. For the deconvolution, we have selected the
Wiener filter, c. f. Chapter 5. The required signal and noise models are the top-
ics of Section 8.2. In Section 8.3, three examples of the deconvoluted signals are
presented and compared to highpass filtering. Different approaches to the estima-
tion of the muscle fiber concentration within the MU are presented in Section 8.4
along with simulations of their performance. In Section 8.5, the fully deconvolved
MUAP is used for estimating the jitter where the MHT method, c. f. Chapter 4, and
Kalman filtering, c. f. Chapter 3, are used to discriminate between APs originating
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from different fibers.

8.1 Prerequisites

To successfully record the EMG signal and extract the desired MUAPs, several
practical issues need to be solved. In this section we state our assumptions regard-
ing the most important ones.

8.1.1 Recording the EMG

Prior to the sampling, the EMG signal must be prefiltered using a bandpass filter
in hardware. The very-low-frequency highpass filter (VLF-HP) removes the DC
levels and the low frequency components dominated by the activity from distant
muscle fibers not of interest for the recording. The high-frequency lowpass filter
constitutes an anti-aliasing lowpass filter (AA-LP) that removes the frequencies
above the Nyquist frequency.

For clarity and to simplify the design of the algorithms, we make the following
assumptions regarding the EMG signal:

Assumption 8.1 Filter Order – The VLF-HP filter is of second order and the AA-
LP filter is of fourth order.

Assumption 8.2 Additive Noise – All signal energy not originating from the MUAP
is regarded as noise.

Assumption 8.3 No quantization Errors – The quantization errors imposed by the
analog-to-digital converter (ADC) are negligible compared to the noise.

Assumption 8.4 Linear System – The recorded signal is not subject to nonlinear
distorsion, e.g., amplifier overload, aliasing, nonlinear hardware, etc.

8.1.2 Extracting the MUAPs

In the recorded EMG signal, several MUs may be present simultaneously and oc-
casionally overlap. The complexity of the EMG signal, i.e., the number of MUs
simultaneously active and their discharge rate, increases with increased muscle
force level [59]. There are algorithms available that decompose EMG signals of
different complexity into individual MUAPs [33] [58] and we do not pursue this
issue here.

Based on these considerations we assume the following regarding the MUAP
extraction:
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Assumption 8.5 Perfect MUAP Extraction – The decomposed MUAPs are not dis-
torted by MUAPs originating from other MUs.

8.2 Algorithm overview

Information about the MU in terms of number of fibers and the temporal dispersion
of the APs is important for diagnosis of disease. This information is not directly
obtainable from the MUAP for two main reasons:

1. Cancellation – The individual APs are multiphasic and their contributions
may partly cancel in the summation MUAP.

2. “Wideness” – The width of the individual APs are large compared to their
separation in time. Thus, the APs normally overlap which complicates the
study of individual APs.

To improve upon this situation, different types of lowpass and highpass filters
and/or different types of electrodes have been applied to the acquired EMG sig-
nal.

Filtering approaches have been applied to the CN MUAP to study its stability at
consecutive discharges [65]. Lately, filtering approaches applied to the CN MUAP
have attained an increased interest due to a desire to replace the costly SF electrode
with the much cheaper CN electrode for jitter measurements [87] [32]. In addition
to the economical advantages, there is the sanitary advantage with the disposable
CN electrodes available, as well as the practical advantage of using one type of
electrode only.

The traditional approaches to improving the MUAP signal have been to first
determine the filter type and then set out to tune its parameters to optimize its
(constrained) performance. We generalize upon this idea and seek the optimal
linear filter. This imposes two problems. First, since the filtered signal is input to a
final, possibly nonlinear, processing step, it may be impossible to find a quantitative
measure of the filter’s optimality. Second, we seek a model based filter design so
that, once we have found a proper model, we are able to produce filters for virtually
any MUAP without the need of an extensive design procedure.

Based on these considerations, we have selected the Wiener filter design meth-
od, see Chapter 5, not primarily because the of its mean squared error (MSE) op-
timality but rather because there is a clear and intuitive correspondance between
the tuning considerations and the produced output. The entities used in the tun-
ing of the Wiener deconvolution filter is a signal model and a noise model, whose
parameters are to be set to give a filter with desired performance.
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Figure 8.1: A block diagram of the synthesis model.

Depending on the application, we apply the deconvolution provided by the
Wiener filter in two different levels that we call partial and full deconvolution,
see below. For this, we need a model of the signal generation, or synthesis. By
combining the ideas from Chapter 6 and Chapter 7, we have compiled the synthesis
model presented next.

8.2.1 Synthesis model

The MUAP measured by the recording equipment is the summed contribution of
all active muscle fibers within the MU, c. f. Chapter 7. Each individual fiber pro-
duces an AP that may be modelled as a convolution of a muscle fiber membrane
current ic(t) and a positional and electrode dependent weighting function wc(t),
c. f. Chapter 6. The fibers in the MU are all triggered by a single axon via the
motor endplate where the trigger impulse is given a variable delay stochastically,
the jitter. The AP is further “delayed” by an amount that depends on the axial po-
sition of the motor endplate relative to the recording electrode and the conduction
velocity of the fiber.

In addition to the MUAP under study, the measurement contains thermal noise
and disturbances as well as distant MUAPs, or background activity, collectively
referred to as noise. Under Assumption 8.5, we do not need to account for other
high amplitude MUAPs close to the electrode.

These considerations are presented in Figure 8.1, where p is the derivative op-
erator and D̃(c)

m (p) is a stochastic delay operator of fiber m. It accounts for the
stochastic delay in the motor endplate and the additional, deterministic “delay”
described above. The transfer functions I (c)

m (s) and W (c)
m (s) model the transmem-

brane current and the electrode and positional dependent weighting function, re-
spectively. All contributions are summed together along with the continuous-time
noise vc(t). Finally, the recording equipment applies a bandpass filter in hardware
prior to the sampling of the discrete-time MUAP φ(n).
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Figure 8.2: The figure illustrates the transmembrane current ic(t) and the CN
electrode weighting function wc(t) for different conduction velocities c and radial
distances r. The transmembrane current depends on conduction velocity alone
whereas the weighting function depends on the radial distance as well.

This may be summarized in the time domain as

φ(n)
4
= φc(nTs) (8.1)

φc(t) = HBP(p)

{
M∑

m=1

W (c)
m (p)I(c)

m (p)D̃(c)
m (p)δc(t) + vc(t)

}
(8.2)

where Ts is the sampling period and HBP(s) is the hardware bandpass filter.
In the frequency domain the above model becomes

Φ(ζ) = Φc(fs Log ζ) (8.3)

Φc(s) = HBP(s)

{
M∑

m=1

W (c)
m (s)I(c)

m (s)D̃(c)
m (s) + Vc(s)

}
(8.4)

where we in (8.3) have assumed that the bandpass filter HBP(s) removes all signal
energy above the Nyquist frequency fs/2 where fs is the sampling frequency.

Figure 8.2 illustrates the transmembrane current and the CN electrode weight-
ing function. As the figure shows, the amplitude of the transmembrane current
increases as the conduction velocity (fiber diameter) increases. Moreover, we see
that the weighting function “flattens out” when the radial distance increases.
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Īo(q) - + -

v(n)

?
φ(n)

Figure 8.3: A block diagram of the deconvolution model.

8.2.2 Deconvolution model

While the model (8.1)-(8.4) is a good approximation of the practical situation, it
is not very helpful in designing a Wiener filter to deconvolve the measured signal
φ(n) because the individual fibers have different model characteristics. Using a
filter bank approach, where each filter is tuned to enhance the contribution from a
certain fiber and suppress the contribution from all others, is not suitable because
the transfer functions, I (c)

m (s) and W (c)
m (s), are too similar between the fibers, see

Figure 8.2. Therefore, we need to find an approximative model that is more suitable
for our goal.

First, however, we make the observation that deconvolving the measured signal
φ(n) using a Wiener filter is principally no different from filtering φ(n) with any
other linear filter. Hence, it is possible to design a Wiener filter that is as good
as any other linear filter in providing the desired output. The only requirement is
that we should be able to replace the M different muscle fiber models I (c)

m (s) and

W
(c)
m (s) with “optimal” design models Īo(ζ) and W̄o(ζ) as shown in Figure 8.3.

The order of the two models are the opposite from Figure 8.1 because we later need
w(n). The order reversal is possible since the models are time invariant.

This is summarized in the time domain by

φ(n) ≈ Īo(q)w(n) + v(n) (8.5)

w(n)
4
= W̄o(q)u(n) (8.6)

u(n)
4
= uc(nTs) (8.7)

uc(t)
4
= HBP(p)

M∑

m=1

D̃(c)
m δc(t) (8.8)

where v(n) is the discrete-time counterpart of vc(t), u(n) is a (possibly) non-
equidistant pulse train and w(n) is typically less “spiky”.
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In the frequency domain we obtain

Φ(ζ) ≈ Īo(ζ)W (ζ) + V (ζ) (8.9)

W (ζ) = W̄o(ζ)U(ζ) (8.10)

U(ζ) = Uc(fs Log ζ) (8.11)

Uc(s) = HBP(s)

M∑

m=1

D̃(c)
m (s) . (8.12)

From a modeling perspective, this model could seem as a crude approximation
to the real situation. Whether this is true or not is here irrelevant because the model
(8.5)-(8.12) is only used for the design of the desired filter and not for modeling
the measured signal φ(n). Moreover, if there exists a linear filter with optimal
performance, it can be formulated as a Wiener filter by defining the design models
appropriately.

In this particular case, this approach is particularly advantegous because the
models for different muscle fibers are quite similar, as shown in Figure 8.2. By for-
mulating the design models as a nominal model complemented with an uncertainty
model, robust filtering provide a stringent way of obtaining the optimal filter [90]
[64].

8.2.3 Noise model

The noise model is based partly on physical knowledge about the recordings and
partly on identification from real signals. From this analysis, we have found it
suitable to divide the noise model into five parts.

1. Very low frequency highpass (VLF-HP) filter – This part models the highpass
filter in the recording equipment. In accordance with Assumption 8.1, we
assume a second order model.

2. Low frequency lowpass (LF-LP) filter – This part models the LF components
in the measured signal. These disturbances are most remarkably noticeable
and are important to take into account. We use a second order LF-LP filter
for this purpose.

3. Resonance peak (RP) filter – This part models the hum from the power lines
and is simply a second order resonance peak.

4. Medium frequency lowpass (MF-LP) filter – This part models the roll-off of
the background activity. It is modeled using a first order, pole only MF-LP
filter.
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Figure 8.4: The spectral power density of the noise retrieved from a real record-
ing (gray) and the noise model (solid). An example realization (dashed) is also
included. As the figure shows, the noise has mainly a lowpass character. In addi-
tion, the spectrum contains two peaks of which the first one are the remains of the
VLF components and the second one is hum from the powerlines.

5. High frequency lowpass (HF-LP) filter – This part models the roll-off present
in the analyzed signal. It is modeled using a fourth order, pole only HF-LP
filter.

These considerations may be summarized in the following model

Hv(ζ)
4
= H1(ζ)H2(ζ)H3(ζ)H4(ζ)H5(ζ) (8.13)

where Hv(ζ) is the transfer function of the noise model and Hi(ζ) corresponds to
each of the filters listed above.

The spectral power density Pv(ζ) is then calculated using

Pv(ζ)
4
= |Hv(ζ)|2η [mV2/kHz] (8.14)

where η is the power density of the noise.
Figure 8.4 shows the spectral power density of the noise v(n) (retrieved from a

real recording) and the tuned noise model Pv(ζ) using the model parameters listed
in Table 8.1. An example realization is also included. Clearly, there is a good
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agreement between the model and the measured noise in this particular recording.
For other recordings, the noise model may need to be retuned, but the structure of
the model is expected to be widely applicable.

Table 8.1: Parameters for the continuous-time noise model

Description Parameter Value

Noise power density η [mV2/kHz] 0.001

VLF-HP zero (2nd order) 1
2π
sB1

[kHz] 0

VLF-HP pole (2nd order) 1
2π
sA1

[kHz] −0.0006

LF-LP zero (2nd order) 1
2π
sB2

[kHz] −0.005

LF-LP pole (2nd order) 1
2π
sA2

[kHz] −0.0003 ± 0.0065i

RP zero (2nd order) 1
2π
sB3

[kHz] −0.032 ± 0.053i

RP pole (2nd order) 1
2π
sA3

[kHz] −0.0018 ± 0.053i

MF-LP pole (1st order) 1
2π
sA4

[kHz] −0.3

HF-LP pole (4th order) 1
2π
sA5

[kHz] −8

8.2.4 Wiener filter tuning

Based on the design models, Īo(ζ) and W̄o(ζ), two different Wiener filters, Gi(ζ)
and Giw(ζ), may be derived, depending on which of the two inputs u(n) and w(n)
we want to estimate, c. f. Chapter 5. By defining

ŵ(n)
4
= Gi(q)φ(n) (8.15)

û(n)
4
= Giw(q)φ(n) (8.16)

where q is the forward shift operator, we call ŵ(n) the partially deconvolved signal
and û(n) the fully deconvolved signal.

The two Wiener filters Gi(ζ) and Giw(ζ) that provide MSE-optimal estimates
of (8.15) and (8.16) are then given by, see Chapter 5,

Gi(ζ) =

{
0, ζ = 1

W̄o(ζ)W̄ ∗
o (ζ)Ī∗o (ζ)

|W̄o(ζ)Īo(ζ)|2+Pv(ζ)Tv
, otherwise

[kΩ mm/(mV ms)] (8.17)

Giw(ζ) =

{
0, ζ = 1

W̄ ∗
o (ζ)Ī∗o (ζ)

|W̄o(ζ)Īo(ζ)|2+Pv(ζ)Tv
, otherwise

[1/(mV ms)] (8.18)
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where ∗ denotes the complex conjugate.
For the work presented in this chapter, we use a pragmatic approach to find rea-

sonably correct design models Īo(ζ) and W̄o(ζ). We simply assume Īo(ζ) ∈ I(ζ)
and W̄o(ζ) ∈ W ′(ζ) where W ′(ζ) is a modified version, see Appendix 8.A, of
W (ζ) defined in Chapter 6, c. f. (6.22). We then test several realizations of I(ζ)
and W ′(ζ), design the Wiener filters, apply them to a set of test APs that span the
range of fibers under study, and select the realizations that yields the best overall
performance in terms of narrow monophasic signals in the fully deconvolved sig-
nal û(n) and no “strange” effects in the partially deconvolved signal ŵ(n). See
Appendix 8.A for details.

With this approach, we have selected

ro = 30 [µm] (8.19)

co = 3.9 [m/s] (8.20)

do = 59 [µm] (8.21)

where ro is the radial distance, co is the conduction velocity, and the fiber diameter
do is given by co through the linear relation (6.8).

In a practical application where (near) optimal performance is strived for, a
more thorough tuning of the models W̄o(ζ) and Īo(ζ) may be needed. With the
framework given by the Wiener filter design, an intuitive feedback of the charac-
teristics of a certain model is available which simplifies the tuning process.

Figure 8.5 shows the spectral energy density of the design models Īo(ζ) and
W̄o(ζ), and the resulting Wiener filters Gi(ζ) and Giw(ζ) for the selected noise
level 5 · 10−3 mV2/kHz, conduction velocity c = 3.3, and radial distance r = 100.
As the figure shows, the filters amplify high frequencies to enhance the information
present there while low frequencies are attenuated because the noise is dominating
for these frequencies.

8.2.5 Refinements

Under ideal circumstances, the fully deconvolved signal û(n) is a sum of stochas-
tically delayed impulses. The spectrum of such a signal is constant for all frequen-
cies but due to the bandpass filter, see Figure 8.1, the spectrum is zero above the
Nyquist frequency. Hence, if we consider the ideal case with no noise, correct



146 Chapter 8. Deconvolving motor unit action potentials

10
−1

10
0

10
1

10
−7

10
−5

10
−3

10
−1

Frequency [kHz]

|I o(f
)|

2  [m
V

2 m
s/

kH
z]

(a)

10
−1

10
0

10
1

10
−1

10
1

10
3

Frequency [kHz]

|W
o(f

)|
2  [m

V
2 m

s/
kH

z]

(b)

10
−1

10
0

10
1

10
−3

10
−1

10
1

10
3

Frequency [kHz]|G
i(f

)|
2  [k

Ω
2 m

m
2 /(

m
V

2 m
s2 )]

(c)

10
−1

10
0

10
1

10
−8

10
−5

10
−2

10
1

Frequency [kHz]

|G
iw

(f
)|

2  [1
/(

m
V

2 m
s2 )]

(d)

Figure 8.5: The figure shows the spectral energy density of the design models (a)
Īo(ζ) and (b) W̄o(ζ), and the resulting Wiener filters (c) Gi(ζ) and (d) Giw(ζ).

model, optimal bandpass filter, etc, the fully deconvolved signal û(n) is given by

û(n) =
M∑

m=1

D̃(c)
m (p)

sin(2πBt)

πt

∣∣∣∣∣
t=nTs

(8.22)

=
M∑

m=1

sin(2πB(nTs + ∆̃m)

πnTs
(8.23)

where ∆̃m is a continuous stochastic variable with mean and variance given by the
stochastic delay operator D̃(c)

m (p).
As (8.23) and Figure 8.6 (a) show, the fully deconvolved signal û(n) contains

a lot of erroneous side lobes because ∆̃m is in general not a multiple of the sam-
pling period Ts. To alleviate this effect, we adjust the corresponding Wiener filter
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Figure 8.6: The fully deconvolved signal of an AP obtained with the CN electrode
(a) without frequency domain windowing, and (b) Hanning window applied in the
frequency domain. The conduction velocity was c = 3.9 m/s, the radial distance
was r = 30 µm, and the noise power density was η = 0.001 mV2/kHz.

by applying a Hanning window in the frequency domain. Hence, we replace the
Wiener filter Giw(ζ) of the full deconvolution with

G′
iw(ζ)

4
= T ′(ζ)Giw(ζ) [1/(mV ms)] (8.24)

where the Hanning window T ′(ζ) is normalized to unit energy and has its maxi-
mum for ζ = 1. As Figure 8.6 (b) shows, this refinement reduces the side lobes
effectively but at the cost of a wider peak.

8.2.6 Simulation parameters

All simulations in this chapter uses the model parameters listed in Table 8.2 unless
stated otherwise. The parameters not listed in the table were identical to those used
in Chapter 7.

8.3 Deconvolution

In this section we show the characteristics of the deconvolution approach presented
above when applied to modelled APs obtained with a CN electrode. The perfor-
mance is compared to an approach similar to the one described in [32] where a
highpass filter was applied to a MUAP in order to improve its resolution.

Three different fibers were simulated with conduction velocity c = 3.3, 3.7,
and 4.1 m/s, respectively. The results when applying a highpass filter, the partial
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Table 8.2: Deconvolution parameters for simulation

Description Parameter Value

Sample frequency fs [kHz] 40

Noise power density η [mV2/kHz] 0.005

Length of fiber Lf [mm] 150

Absolute jitter (SD) σj [µs] 15

Conduction velocity c [m/s] 3.7

Radial distance r [µm] 100

Axial position z0 [mm] 40

Radial distance, deconvolution r̄o [µm] 30

Conduction velocity, deconvolution c̄o [m/s] 3.9

deconvolution filter, and the full deconvolution filter to these CNAPs are presented
below.

8.3.1 Highpass filtered CNAP

The main advantages of using the SF electrode compared to the CN electrode is
that the recorded APs superimpose to a lesser extent (shorter width) and suppress
distant APs more efficiently. Hence, the SF signal is directly suitable to estimate
the neuromuscular jitter because relatively simple algorithms may be used for the
analysis.

The advantage of the CN electrode, on the other hand, is its low price and
that it is disposable. To improve the suitability for jitter measurements of the APs
obtained using a CN electrode, a highpass filter may be applied that shortens the
width of the recorded APs as well as suppresses more distant fibers [87] [32].

In Figure 8.7 this approach is presented on three different APs obtained using
the CN electrode. The figure shows the original AP and two highpass filtered
versions using second order highpass Butterworth filters with cut-off frequencies
at 500 Hz and 2 kHz, respectively. As a comparison, the “ideal” result where each
AP corresponds to a single impulse is included.

As the figure shows, the highpass filters indeed shorten the width of the APs
as desired, but they also add new phases to the signal (both a dip and an artificial
peak). In a more complex situation where several APs are recorded, cancellation
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Figure 8.7: Sample results from a simulation of three APs with the conduction
velocities c = 3.3, 3.7, and 4.1 m/s, respectively. In each diagram, we see (a) the
unfiltered CNAP, (b) the impulses we want to estimate, (c) the highpass filtered
CNAP using a cut-off frequency of 500 Hz, and (d) the highpass filtered CNAP
using a cut-off frequency of 2 kHz. Both highpass filters were second order But-
terworth filters.

may occur unless the APs are sufficiently separated in time. This place an upper
limit on the suitability of this approach.

8.3.2 Partially deconvolved CNAP

Considering the multiphasic shape of the APs and the accompanying risk of can-
cellation, we know from Chapter 6 that the transmembrane current is the source of
this. By separating and removing the contribution of the transmembrane current, a
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Figure 8.8: Sample results from a simulation of three APs with the conduction
velocities c = 3.3, 3.7, and 4.1 m/s, respectively. In each diagram, we see (a) the
unfiltered CNAP, (b) the weighting functions we want to estimate, (c) the highpass
filtered CNAP using a second order Butterworth filter with a cut-off frequency of
2 kHz, and (d) the partially deconvolved signal ŵ(n).

monophasic signal arises instead.
Our approach to this is the partial deconvolution described above where a

Wiener filter is designed to deconvolve the APs and remove the contribution of
the transmembrane current.

In Figure 8.8 the three different APs obtained using the CN electrode are shown
together with the partially deconvolved signal where the highpass filtered (2 kHz)
AP from Figure 8.7 is included as a comparison. The figure also shows the “ideal”
result with the weighting function corresponding to each AP.
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As the figure shows, all deconvolved signals are similar to the ideal result de-
spite the Wiener filter is not optimally tuned to any of the APs. Moreover, the
width is comparable with the highpass-filter approach while a monophasic output
is produced. The slow decay is a problem, however, because it disturbs the jitter
estimates unless the APs are sufficiently separated.

8.3.3 Fully deconvolved CNAP

By also removing the contribution of the weighting function, a narrow impulse is,
ideally, obtained. In practice, however, the recording is bandpass filtered, the indi-
vidual APs originate from fibers at different distances, and noise is added. When
taking these sources into account to produce a robust output, the impulse becomes
wider.

In Figure 8.9 the three different APs obtained using the CN electrode are shown
together with the fully deconvolved signal where the highpass filtered (2 kHz) AP
from Figure 8.7 is included as a comparison. The figure also shows the “ideal”
result with the impulses corresponding to each AP.

As the figure shows, all deconvolved signals are similar to the ideal result de-
spite the Wiener filter is not optimally tuned. Moreover, compared to the highpass
filter and the partial deconvolution approaches, the width is further reduced while
a monophasic output is produced. Except for AP #1, all impulses quickly return
to zero which is favourable when measuring the jitter as well as calculating the
number of fibers.

By comparing AP #1 in Figure 8.9 (c) and (d), we see that the highpass filter
output is not as noisy as the fully deconvolved signal. If desired, the latter signal
may be improved by retuning the Wiener filter using an assumed conduction veloc-
ity of, e.g., 3.3 m/s instead. This yield a fully deconvolved AP that is monophasic
and estimates the main peak as good as the highpass filtered AP. If further im-
provements are desired, the assumed electrode distance may be retuned as well.

The price paid for this improvement is that the performance on the other APs
becomes worse but this is still better in terms of cancellation and peak width than
corresponding results of the highpass filter. This suggests that the deconvolution
approach is potentially superior to the highpass filter approach. The characteristics
that is important (optimal overall performance, or optimal performance for a certain
type of APs) controls what optimality criterion to select. The Wiener filter design
then produces the linear filter that fulfills this criterion the best.
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Figure 8.9: Sample results from a simulation of three APs with the conduction
velocities c = 3.3, 3.7, and 4.1 m/s, respectively. In each diagram, we see (a) the
unfiltered CNAP, (b) the impulses we want to estimate, (c) the highpass filtered
CNAP using a second order Butterworth filter with a cut-off frequency of 2 kHz,
and (d) the fully deconvolved signal û(n).

8.3.4 Deconvolution of a MUAP

Figure 8.10 shows the results of processing the MUAPs from four discharges of
a simulated MU with twice as many fibers per square millimeter as normal. As
shown in Figure 8.10 (a), the MUAP shape is varying noticeable due to the jitter in
the constituent AP components and an experienced eye can see that at least three
dominant peaks are present. From Figure 8.10 (c) we can see that, in fact, four
peaks prevail in the MUAP.
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Figure 8.10: Sample results from a simulation of a MU with twice as many fibers
as normal where the MUAPs of four discharges were obtained using a CN elec-
trode. The four MUAPs are superimposed at the top of each diagram and shown
individually below in subsequent traces. In each diagram, we see (a) the unfiltered
MUAP, (b) the ideal weighting functions, (c) the ideal impulses, (d) the MUAP
filtered using a second order highpass Butterworth filter with a cut-off frequency
of 2 kHz, (e) the partially deconvolved signal ŵ(n), and (f) the fully deconvolved
signal û(n).
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Using the highpass filtered MUAP, Figure 8.10 (d), only two fibers are clearly
seen (the third peak is an artifact, see Section 8.3.1). Using the information in the
jitter, an experienced eye can see that the first peak is at least a double (actually a
triple) peak and that the second peak is indeed single.

In Figure 8.10 (e) and (f), however, all four peaks may be noticed where the
latter diagram yields the most clear picture of the number of peaks and their where-
abouts.

8.4 Estimating mean fiber concentration

The number of muscle fibers and their distribution within a MU is an important
factor in diagnosis. This section explores the possibility of estimating the MFC
using a MUAP obtained with a CN electrode. The MFC denotes the number of
fibers present (on average) within the area 1 mm2 and is measured in fibers/mm2.

A similar, but different, measure is the fiber density (FD) parameter [86]. There
are, however, two main drawbacks with the FD parameter: the requirement of a
SF electrode and the manual fiber-counting procedure. We seek instead a fully
automatic method that accurately obtains the corresponding information from a
CN MUAP.

The feasibility of the CN MUAP (bandpass filtered 20 Hz-10 kHz), the partially
deconvolved MUAP, and the fully deconvolved MUAP for estimating the MFC is
explored below through Monte-Carlo simulations. As estimates of the MFC, the
peak-to-peak amplitude, the absolute area, and the number of peaks are tested. We
refer to these three entities as the measurement variables.

In each simulation, the mean and the variance of the measurement variable
were calculated using 30 discharges obtained from 20 random MUs. The MUs
were generated as described in Chapter 7.

The mean is expected to increase linearly with the MFC (up to a possible sat-
uration point, see Figure 8.13) whereas the variance is expected to be directly pro-
portional to the MFC. Both these expectations also corresponded well with the
acquired data, see below.

To be able to compare the performances of the three input signals listed above,
the linear assumption was used to make a linear regression of the data. With the
regression line, each measurement variable was normalized to yield a value of 1 at
MFC = 5 fibers/mm2 (corresponding to a normal healthy person).

Figure 8.11 shows the normalized mean peak-to-peak amplitude with the 95%
confidence intervals included for each of the three input signals. As the figure
shows, the assumption that the data increases linearly with the MFC seems to be
reasonable.
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Figure 8.11: The normalized mean peak-to-peak amplitude (solid) with the 95%
confidence intervals included (dashed) for each of the three input signals (a) the
CN MUAP φ(n) after bandpass filtering (20 Hz-10 kHz), (b) the partially decon-
volved signal ŵ(n), and (c) the fully deconvolved signal û(n). The normalized
amplitude was set to 1 for MFC = 5 using the linear regression (dotted) of the
data.
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Figure 8.12: The normalized mean absolute area (solid) with the 95% confidence
intervals included (dashed) for each of the three input signals (a) the CN MUAP
φ(n) after bandpass filtering (20 Hz-10 kHz), (b) the partially deconvolved signal
ŵ(n), and (c) the fully deconvolved signal û(n). The normalized amplitude was
set to 1 for MFC = 5 using the linear regression (dotted) of the data.

Owing to the normalization, the advantage of the partially deconvolved signal
when estimating the MFC through the peak-to-peak amplitude is clearly visible.
The slightly worse performance of the CN MUAP may be explained by cancella-
tion whereas the equivalent performance of the fully deconvolved MUAP may be
explained by its unsuitability for peak-to-peak amplitude measurements.

Figure 8.12 shows the normalized mean absolute area with the 95% confidence
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Figure 8.13: The normalized mean number of peaks (solid) with the 95% con-
fidence intervals included (dashed) for each of the three input signals (a) the CN
MUAP φ(n) after bandpass filtering (20 Hz-10 kHz), (b) the partially deconvolved
signal ŵ(n), and (c) the fully deconvolved signal û(n). The normalized amplitude
was set to 1 for MFC = 5 using the linear regression (dotted) of the linear portion
(MFC ≤ 5) of the data.

intervals included for each of the three input signals. As the figure shows, the
assumption that the data increases linearly with the MFC seems to be reasonable
here as well.

All input signals provided small confidence intervals which suggests that the
area is a good parameter when estimating the MFC. There are no clear differences
between the three, but the partially deconvolved signal seems to provide a slightly
smaller variance than the other two.

In the final simulation, the number of peaks was assessed. In order to count
only fiber peaks and not the noise peaks, a threshold was used and individually
tuned for each input signal. Only the peaks above this threshold were counted.

Figure 8.13 shows the normalized mean number of peaks with the 95% confi-
dence intervals included for each of the three input signals. As the figure shows,
the measurements saturate at MFC ≈ 5 fibers/mm2 but seems to increase linearly
below that value. Here, only the fully deconvolved signal, Figure 8.13 (c), provides
a small variance.

Figure 8.14 shows the correspondance between the estimated and the true MFC
with the 95% confidence intervals for the three input signals and the three measure-
ment variables. The results are calculated using the linear regressions of the mean
and the variance. Hence, the performance of the peak-counting approach is only
available for MFC ≤ 5.

With these diagrams, a quantitative comparison of the different approaches
may be carried out. In Figure 8.14 (a), for example, the differences in Figure 8.11
are now clearly seen; the partially deconvolved signal provides the best MFC esti-
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Figure 8.14: The correspondance between the estimated MFC and the true MFC
using the linear regression (dotted) with the 95% confidence intervals included
for the CN MUAP (solid), the partially deconvolved signal (dash-dotted), and the
fully deconvolved signal (dashed). Each diagram show the results using (a) the
normalized mean peak-to-peak amplitude, (b) the normalized mean absolute area,
and (c) the normalized mean number of peaks. The confidence intervals are cal-
culated using the linear regressions of the mean and the variance.

mate whereas the fully deconvolved signal provides the worst.
As Figure 8.14 (b) shows, the performance of the partially deconvolved signal

is only slightly better than the other two when the area is used, whereas the perfor-
mance of the fully deconvolved signal is clearly better than the other two when the
number of peaks is measured as shown in Figure 8.14 (c).

In conclusion, the mean absolute area seems to be the best measurement vari-
able to use. When it comes to selecting the input signal, the results suggests that
any of the three may be selected.

8.5 Estimating jitter

By measuring the timing variability, the jitter, of individual APs, functional studies
of the motor endplates may be performed. Unless axonal stimulation is used, the
absolute jitter in individual muscle fibers can not be estimated. Instead, the relative
jitter is measured by observing the variability of the inter-potential intervals (IPIs)
in pairs of APs [86].

Often, the jitter is expressed using the mean consecutive difference (MCD)
because of its robustness against outliers and trends [29]. It is defined as

MCD
4
=

1

J − 1

J−1∑

j=1

|IPIj+1 − IPIj | (8.25)
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where IPIj is the IPI of a pair of APs in discharge j out of a total of J discharges.
For Gaussian jitter without trends, the expectation of the MCD is

E(MCD) =
2√
π

√
σ2

1 + σ2
2 (8.26)

where σ2
1 and σ2

2 are the variances of the absolute jitter of the two paired APs.
To be able to perform these calculations, the APs must first be detected and

localized in order to obtain their (relative) latency. Then, the detections need to be
classified, or discriminated, in order to assure that the IPIs are calculated on the
same pair of muscle fibers for all discharges.

Once all of this is done, the actual jitter calculations are straight-forward. This
section is therefore focused on the localization and discrimination of the APs of
which the former is presented next.

8.5.1 Peak localization

In this section the performance of the peak localization algorithm is analyzed. To
obtain good jitter estimates, it is important that the localization of the APs is ac-
curate. The algorithm used here, see below, is the same as currently used in clin-
ical routine. The algorithm is tested on three types of signals: a bandpass filtered
(500 Hz - 10 kHz) SF compound AP, a highpass filtered (2 kHz) CN MUAP, and a
fully deconvolved CN MUAP.

The requirements are high; in a normal healthy person the absolute jitter has a
standard deviation of about 15 µs with lower values below 5 µs [86]. Hence, the
standard deviation of the localization error must be significantly lower in order to
estimate the jitter accurately. With a sampling period of 25 µs (fs = 40 kHz), the
sampled data must be further processed in order to achieve the required accuracy.

The algorithm used here localizes the APs in two steps: First, a coarse esti-
mation is performed by finding peaks in the sampled data. Then, these estimates
are refined by fitting a second degree polynomial to three samples of the peak and
use the (mathematical) point in time where the polynomial has its maximum as the
final estimate. With this algorithm, it is possible to achieve a standard deviation of
the localization error below 2 µs if the input signal quality is good enough.

There are mainly two sources of error: the noise that disturbs the localization
refinement and the presence of nearby APs that displace the observed peak from
its true position. Below, these two sources of error will be analyzed in more detail.

The noise-induced localization error

Here, the the first part of the localization error is explored in further detail. In
Figure 8.15 the standard deviation of the noise-induced localization error is shown
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Figure 8.15: The standard deviation of the peak localization error when the algo-
rithm is applied to the SF compound AP (dotted), the highpass-filtered CN MUAP
(dashed), and the fully deconvolved signal (solid). For each radial distance, three
sets of 100 APs were simulated with conduction velocity c = 3.3, 3.7, and 4.1 m/s,
respectively. The noise power density used was η = 0.001 mV2/kHz. In each
diagram, the SF and highpass-filter performances were estimated under identical
conditions, whereas the performance of the fully deconvolved signal was esti-
mated (a) directly, and (b) after a bandwidth reduction to 50% (±10 kHz).

as a function of the radial distance for three fibers with conduction velocities c =
3.3, 3.7, and 4.1 m/s, respectively. As expected, the error increases as the radial
distance increases but, as Figure 8.15 (a) shows, the error for the fully deconvolved
signal is significantly higher than the other two signals.

This behavior arises, in combination, because the localization-refinement al-
gorithm is noise sensitive and because this was not regarded in the tuning of the
Wiener filters. One way to alleviate this is to limit the bandwidth as to prevent
the high-frequency noise from disturbing the estimation. The drawback is that the
resolution capability decreases correspondingly.

Figure 8.15 (b) shows the localization error when the bandwidth was reduced to
50% of the original. Hence, the bandwidth is ±10 kHz and, as the figure shows, the
performance is improved because the noise above 10 kHz is discarded. The signal
energy above this frequency is also discarded, of course, which is not desirable.
By properly addressing these aspects during the tuning of the Wiener filter, the
performance may be improved further.

The interference-induced localization error

Here, the second part of the localization error is explored by analyzing the peak
displacement due to the presence of another AP and its impact on the actual MCD
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Figure 8.16: En example of the peak displacement taking place in the compound
AP (solid) when the two constituent APs (dotted) are closely spaced in time. The
peaks in the compound AP (+) are displaced to the left (negative displacement)
compared to the peaks in the individual APs (×). (The APs were obtained with
the SF electrode.)

measurement, see Figure 8.16.
The same setup as above was used with the difference that a completely noise-

free signal was used. Note, however, that the Wiener filters were still tuned using
the same noise level as above. An additional AP with the same properties as the
AP under study were added where the time separation of the two APs ranged from
-800 µs to +800 µs. A negative time difference means that the other peak arrives
before the peak under study. The displacement of the peak due to the presence of
the other AP was then estimated by comparing the peak position with and without
the presence of the other peak. The bandwidth reduction to 50% and the same
refinement algorithm as described above were used in all estimations.

The peak displacements found for each of the three approaches are shown in
Figure 8.17-8.19. A positive displacement means that the peak is delayed com-
pared to its undisturbed position. For small time differencies only one peak was
observable which rendered the analysis impossible.

Figure 8.17 shows the displacement taking place in the SF compound AP. The
region where only one peak is discernable ranges from approximately ±200 µs to
±400 µs depending on the radial distance.

Figure 8.18 shows the displacement taking place in the fully deconvolved MUAP.
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Figure 8.17: Displacement of an AP obtained with the SF electrode when a neigh-
boring AP is present. The displacement is shown as a function of the time sepa-
ration for the radial distances r = 30, 150, and 300 µs as indicated by the (solid),
(dashed), and (dotted) lines, respectively. All parameters were identical for the
two APs.
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Figure 8.18: Displacement of an AP obtained with the CN electrode when a neigh-
boring AP is present and the full deconvolution is applied. The displacement is
shown as a function of the time separation for the radial distances r = 30, 150,
and 300 µs as indicated by the (solid), (dashed), and (dotted) lines, respectively.
All parameters were identical for the two APs.

The region where only one peak is discernable ranges from approximately ±120 µs
to ±250 µs depending on the radial distance.

This is an improvement compared to the performance in Figure 8.17. Both
the one-peak region and the magnitude of the displacement are smaller. For small
radial distances the displacement is even approximately zero.

Figure 8.19 shows the displacement taking place in the highpass filtered MUAP.
The region where only one peak is discernable ranges from approximately ±150 µs
to ±400 µs depending on the radial distance.

This result is somewhere in between that of Figure 8.17 and Figure 8.18 except
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Figure 8.19: Displacement of an AP obtained with the CN electrode when a neigh-
boring AP is present and the highpass filter is applied. The displacement is shown
as a function of the time separation for the radial distances r = 30, 150, and
300 µs as indicated by the (solid), (dashed), and (dotted) lines, respectively. All
parameters were identical for the two APs.

for positive time differencies where the displacement is practically zero for many
APs in this case.

With these results, we can anticipate that the jitter estimation will be disturbed
by neighboring APs. In Figure 8.20 the results of measuring the MCD of two
APs for different time separations are shown. With the absolute jitter 15 µs, the
exptected MCD is about 24 µs as indicated in the figure.

The advantage of the narrow impulses in the fully deconvolved signal is clearly
shown. Already from 300 µs, the fully deconvolved CN MUAP yields stable es-
timates as opposed to 1000 µs for the highpass filtered CN MUAP and (possibly)
2000 µs for the SF compound AP.

By comparing, respectively, Figure 8.20 (a)-(c) with Figure 8.20 (d)-(f), it is
clear that the jitter measured in the SF signal is biased albeit with a low variance.
In contrast, the other algorithms yields less biased estimates but with somewhat
higher variance.

In conclusion, the results suggest that the fully deconvolved MUAP may suc-
cessfully be used for jitter estimation. If the variance of the localization error with
this input may be reduced further to a level comparable with that of the SF input,
this approach may well outperform the other two algorithms.

8.5.2 Peak classification

To discriminate between APs originating from different muscle fibers, we propose
classification through the use of a MHT/Kalman tracker, c. f. Chapter 4 and Chap-
ter 3, because it is based on a Bayesian, statistical approach. As such, it is able to
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Figure 8.20: The diagrams show two simulation runs where the jitter MCD is esti-
mated for two fibers at varying mean inter-peak intervals. Each diagram represents
(a) SF potential, (b) fully deconvolved signal (50% bandwidth reduction), and (c)
highpass filter CN potential. (d)-(f) Analogous with (a)-(c), but the amplitude for
the second AP was reduced to 50%.

provide the maximum a posteriori classification of the available APs under certain
conditions, see Section 4.4. The most important aspect is the statistical model be-
cause it is used by the MHT algorithm to differentiate between a good classification
and a bad one.

The required Kalman filter is simple in this case; it consists of two integrating
subsystems driven by white noise. The subsystems model the AP latency and the
amplitude, respectively.

We anticipate this algorithm to provide good AP classifications if properly
tuned. As a mere “proof of concept”, a test run with no special tuning is shown
in Figure 8.21 where the individual APs in 20 discharges of a fully deconvolved
MUAP are detected and classified. The detector was a simple peak detector that
reported all peaks above a certain threshold with the same resolution as the sam-
pling period (25 µs). (No polynomial was fitted to the peaks in order to refine the
localization.)
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Figure 8.21: A sample result of using the MHT/Kalman algorithm to discriminate
and classify the detected APs. The diagrams show (a) the fully deconvolved signal,
(b) the detected peaks, and (c) the found tracks. Detections not assigned to any
track are marked (◦).

As the figure shows, the tracking algorithm performs well in this example de-
spite no particular tuning was carried out. This suggests that a performance “re-
serve” is available that may be used in more complex scenarios with false spikes
and other disturbances. Note that one observation in discharge #25 (marked in the
figure) was not assigned to any track. That is actually perfectly acceptable because
it is clearly a double peak (wider and higher) where the two individual peaks could
not be resolved, see Figure 8.21 (a). Optimally, all such peaks should be discarded
and not assigned to any track because the succeeding jitter estimate is impaired by
such spikes.

8.6 Discussion

The possibility of using Wiener filters to improve the diagnostical value of the
MUAP obtained with a CN electrode was explored. To design and tune the Wiener
filter a noise model and a design model are required. Depending on the choice of
criterion, the design model become different.

By assuming that the design model were to be found among the set of AP
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models, a heuristic tuning approach was used where a set of Wiener filters were
tested on a set of APs and the filter with the best overall performance was selected.
It was considered important that the output was monophasic and that the peaks
were as narrow as possible without artifacts being generated.

Two Wiener filters were designed which allowed two levels of deconvolution,
namely: partial deconvolution and full deconvolution. Both were shown to produce
monophasic signals when applied to MUAPs. This was different from both the
original MUAP as well as a highpass filtered MUAP. The latter was included as
a comparison because it has been suggested [87] [32] that by applying a highpass
filter to the CN signal it may provide the same type of information as if a SF signal
was used.

Certainly, the width of the APs become less wide by applying the highpass fil-
ter, but the filtration produces additional phases as artifacts that may erroneously
be interpreted as a resolved peak. Nevertheless, the extra phases introduced disturb
the analysis of nearby APs. A monophasic signal, in contrast, has a minimal im-
pact on nearby APs. This was also shown where a set of four discharged MUAPs
with four dominating peaks were targeted with the highpass filter, the partial de-
convolution filter, and the full deconvolution filter, respectively. The highpass filter
resolved two peaks only and produced a noticeable artifact in addition. By using
the jitter information, an experienced eye could see that the first peak was a multi-
ple. The deconvolved signals, on the other hand, clearly resolved all four peaks in
most of the discharges.

In Section 8.4 the possibility of estimating the mean fiber concentration (MFC)
using a CN MUAP was explored. The MUAP was processed in three ways: band-
pass filtered (20 Hz-10 kHz) as in today’s clinical routine, partially deconvolved
using the Gi(ζ) Wiener filter, and fully deconvolved using the Giw(ζ) Wiener fil-
ter. Three MFC estimates were analyzed: the peak-to-peak amplitude, the absolute
area, and the number of peaks.

All in all, the area provided the best performance of the three estimates with
comparable results for all three MUAP variants. This suggests that the area should
be used when estimating the MFC and that the MUAP preprocessing is not so im-
portant. Further studies should be carried out, however, because pathological MUs
may yield different results. Both myogenic and neurogenic MUs, for example,
have an inhomogeneous distribution of their muscle fibers and this may affect the
MFC estimates differently than the homogeneous MUs analyzed in this chapter.

In Section 8.5 the characteristics of three jitter estimation approaches were
analyzed. The selected approaches differed in which input signal that was used
and were: a bandpass filtered (500 Hz-10 kHz) SF compound AP as used in today’s
clinical routine; the fully deconvolved CN MUAP as presented in this chapter; and
a highpass filtered (2 kHz) CN MUAP as suggested in [32].



166 Chapter 8. Deconvolving motor unit action potentials

The SF signal was shown to be clearly more accurate than the other two, espe-
cially the fully deconvolved signal, in localizing the peaks. By a 50% bandwidth
reduction of the fully deconvolved signal the performance improved. By prop-
erly tuning the Wiener filter, it is possible to improve this even further; at least to
a level comparable with the performance of the highpass filtered MUAP because
both filters are linear.

The peak displacement caused by a neighboring AP showed a different picture.
In this case, the roles were changed and the SF signal performed worst and the
fully deconvolved signal performed best. Here, the benefit of the monophasic and
narrow shape provided by the fully deconvolution filter becomes clear; the APs
may be more closely spaced without causing interference.

By calculating the MCD for two APs at different spacings in time, it was shown
that the peak displacement is just as important a factor when estimating the jitter.
To obtain good jitter estimates through the MCD, the individual APs, when using
the SF signal or the HP filtered CN signal, must be separated at least 1 ms (possibly
more with the SF signal) compared to 300 µs for the fully deconvolved signal.

For MUAPs with more than two detected APs, the detection needs to be clas-
sified so that the IPIs are calculated on the same pair of muscle fibers for all dis-
charges.

We propose the use of the MHT/Kalman tracking method because it provides
the optimal maximum-a-posteriori classification if the used statistical model is cor-
rect and enough data storage is available. Even if these requirements are not com-
pletely satisfied, the performance is good.

A proof of concept was presented where a MUAP with four detected APs was
processed. Without any special tuning, the tracking result was good and the APs
was successfully tracked.

With a spacing of 100 µs, the APs sometimes fused and formed a single peak.
Preferrably, all such peaks should not be assigned to any track. One way to do this
is to discard all observations in a certain region where there are fewer observations
than expected. For example, in Figure 8.21, there are several traces with two ob-
servations at latencies about 10.8 ms. Hence, it is likely that a single observation
in this region is due to an unsuccessful resolution. Hence, no observation with a
latency of about 10.8 ms should be assigned to a track unless there are two obser-
vations available. The worst case scenario is that there are occasions where one
AP really is absent (blocking, for example) and the algorithm discards correct ob-
servations. This yields only a correspondingly higher variance in the jitter estimate
(of closely spaced APs) but seems to be a reasonable price to pay.

The conclusions from this analysis is that the proposed prefiltering may im-
prove the usability of the MUAPs in assessing the MFC. Moreover, the results
suggest that the jitter may be estimated from the concentric needle EMG with an
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accuracy comparable with the traditional single fiber EMG method. To test the
validity and implications of these conclusions, further studies are needed.
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Appendix 8.A Finding the optimal Wiener filters

Here we present a straight-forward procedure to find appropriate Wiener filters by
simply testing a range of different Wiener filters on a range of different APs. For
the applications considered in this chapter, the overall performance of the Wiener
filters is important.

The full deconvolution must provide a monophasic signal with as narrow as
possible a spike. No significant artifacts are allowed in the signal because this
would spoil the deconvolution of the MUAPs. Also, the range of tested APs must
reflect the range of the APs in the intended MUAPs.

The weighting function used in the tuning, W ′(ζ), is a modified version of
W (ζ) from Chapter 6. There are two modifications introduced. First, the fiber
length is assumed to be infinite because the actual value is unknown and may also
differ among the fibers. Second, the weighting function is non-causal with its peak
at t = 0 around which it is symmetrical. In principle, it is equivalent with an
infinite muscle fiber that was triggered in the infinite past (t = -∞) and where the
transmembrane current arrives at the electrode at t = 0. For obvious reasons, this
infinite weighting function is truncated and transformed into the frequency domain
to form W ′(ζ).

By testing different realization of both the APs and the Wiener filters, we have
concluded that the design models Īo(ζ) and W̄o(ζ) defined by the parameter set-
tings

co = 3.9 [m/s] (8.27)

ro = 30 [µm] (8.28)

where co is the conduction velocity and ro is the radial distance, provide the Wiener
filters with the best overall performance in terms of number of phases and amount
of artifacts.

Below, we motivate this selection with two figures where, respectively, the
conduction velocity is varied while keeping the radial distance constant, and vice
versa.

The result when varying the conduction velocity is shown in Figure 8.22 where
the full deconvolution filter Giw(ζ) is applied to an AP φ(n) obtained with the
CN electrode. In each column the same AP was used as input to the different
Wiener filters while in each row the same Wiener filter was applied to the different
APs. Hence, to find the Wiener filter that yields the best overall performance, the
row with the best overall performance should be selected and the corresponding
conduction velocity co identified.

From the figure, it can be seen that the second row from the top only contain
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Figure 8.22: The result when applying the full deconvolution filter Giw(·) on a
single AP φ(·) while varying both the conduction velocity c for the synthesis as
well as the conduction velocity co for the deconvolution. Hence, the same AP
was used in each column while the Wiener filter was varied, whereas the same
Wiener filter was used in each row while the AP was varied. For example, the
deconvolution result found in the second column from the left and the third row
from the bottom was synthesized using the conduction velocity c = 3.5 m/s while
it was deconvolved using the conduction velocity c = 3.7 m/s. The radial distance
was equal for both synthesis and deconvolution and selected to r = ro = 100 µm.

monophasic signals that are reasonably narrow. Thus, selecting co = 3.9 m/s seems
reasonable.

Analogously, Figure 8.23 shows the same principle but for varying radial dis-
tance instead. In the figure, the first row from the bottom only contain monophasic
signals. Thus, selecting ro = 30 µm, as stated above, seems reasonable.
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Figure 8.23: The result when applying the full deconvolution filter Giw(·) on a
single AP φ(·) while varying both the radial distance r for the synthesis as well
as the radial distance ro for the deconvolution. Hence, the same AP was used in
each column while the Wiener filter was varied, whereas the same Wiener filter
was used in each row while the AP was varied. For example, the deconvolution
result found in the third column from the left and the first row from the bottom
was synthesized using the radial distance r = 100 µm while it was deconvolved
using the radial distance ro = 30 µm. The conduction velocity was equal for both
synthesis and deconvolution and selected to c = co = 3.9 m/s. Note that the two
topmost rows are reduced in magnitude with a factor of two. Moreover, the results
in the two rightmost columns are also shown magnified (dashed) with a factor of
ten (five for the two topmost/rightmost results).



CHAPTER 9

Detecting and discriminating C-fiber action potentials

IMPROVING signal processing in an application where traditional tools are in-
adequate often generates many new challenges. We will here describe such an

application, arising from the need to examine the stimulus-response characteristics
of peripheral unmyelinated (C) fibers in human skin nerves. Key tools for the so-
lution were to be found in a seemingly unrelated area, namely radar tracking of
multiple targets.

The action potentials (APs) of the C-axons are recorded through a thin needle
electrode inserted transcutaneously into the peroneal nerve of an awake human
subject [94] [43]. The APs may be detected as extracellular spikes in this recording.
Yet, the signal-to-noise ratio (SNR) is rather poor and the amplitude of some APs
is of the same order of magnitude as the peaks of the noise [35]. In such situations
special methods are required for the detection.

Neuronal activity is evoked by applying sensory stimuli in the skin area inner-
vated by the fiber of interest. One problem, however, is that APs originating from
other fibers are also recorded by the electrode.1 Their presence obstructs the ex-
amination of the stimulus-response characteristics as it is virtually impossible to
decide which APs originate from the fiber under study.

To overcome this problem, Hallin and Torebjörk introduced a method that
shows the excitation of a C-fiber by utilizing the so-called marking phenomenon
[95]. The phenomenon stems from the slight decrease of a fiber’s conduction ve-
locity after an AP has been conducted. The conduction velocity then slowly returns
to its initial value.

The principle of the method is to apply a distinct stimulus repetitively, at a low

1These fibers could be either co-excited by the applied stimuli or spontaneously active.

171
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Figure 9.1: The APs of two C-fibers with latencies of about 303 ms and 360 ms,
respectively, are shown. The responses were excited by electrical stimuli delivered
at 0.25 Hz into the skin innervation territory of the fibers. Successive responses
are displayed in traces from top to bottom. At trace 13, the left unit was activated
in response to a mechanical stimulus causing a decreased conduction velocity, i.e.,
increased latency. Following this, the conduction velocity recovered gradually as
indicated by the APs returning to the latency prior to the activation. The right unit
did not respond to the mechanical stimulus and, hence, its latency was retained
throughout the recording.

frequency (0.25 Hz), into the innervation territory of the C-fiber under study. For
each impulse, one single AP is evoked and appears in the recording after a certain
latency (Figure 9.1, at 303 ms). To document the response characteristics of the
C-fiber, a physiological test stimulus (e.g., mechanical, temperature, or chemical)
is applied into the receptive field of the fiber. If such a stimulus generates addi-
tional APs, the conduction velocity of the affected fiber decreases. Hence, the AP
excited by the repetitive stimuli shows a noticeable increase in latency (Figure 9.1,
trace 13 to 40). This change in latency is used as a marker to indicate that the C-
unit responded to the applied physiological stimulus [74]. In addition, the latency
increase provides information about the number of APs that were generated by the
test stimulus [73].

To enhance the efficiency of these experiments, a computer-supported record-
ing system is used [34] that both emits the repetitive stimuli and records the re-
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sponses. For the repetitive stimuli, electrical impulses are used because they are
both distinct and excite all different kinds of nerve fibers. The impulses are de-
livered through needle electrodes positioned in the innervation area of the fiber of
interest. Often, several fibers are co-activated and recorded simultaneously, but due
to differences in conduction velocity of the individual C-fibers, the APs are spaced
in time in the recorded signal (Figure 9.1, at 303 ms and 360 ms). Using the mark-
ing phenomenon, it is thus possible to identify separate C-fibers and to examine
their characteristic latency responses.

In the human skin nerves, different types of C-fibers exist [75].2 Recently, it has
become evident that the latency increase, due to a particular number of additionally
triggered APs, and the time course of the recovery differ in different classes of C-
fibers [97]. This finding is intriguing because it may promote new insights into
differential properties of membranes in different C-fiber classes in humans.

Previously, the analysis of the recorded traces was carried out manually; a very
time consuming task. Therefore, a computer program that detects the APs, dis-
criminates between APs originating from different C-fibers, and estimates latency
shifts and recovery constants quantitatively has been developed [57] [44]. The ap-
plication is based on the signal processing algorithms presented in Chapter 2, 3,
and 4.

9.1 Algorithm overview

To study the characteristics of the latency time course, two major problems need to
be solved: the detection of APs in noisy recordings and the discrimination of APs
originating from different C-fibers.

Practical applicability was the most important issue considered during the de-
velopment of the signal processing algorithms. Hence, optimality was not strived
for per se as it often means poor performance if key assumptions become invalid.
Instead, the goal was to create an analysis tool that is easy to operate and quickly
yields results comparable with a manual analysis. By meeting this goal, valuable
time would be saved for the benefit of the evaluation work.

The signal processing approach we decided upon analyzes the C-fiber record-
ings in three steps (see Figure 9.2 and Figure 9.3):

1. Detection – Signal detection in noise is a problem with well-known solu-
tions. With the considerations mentioned above in mind, the matched filter

2There are several classes of afferents carrying sensory information to the central nervous system
and there are also several classes of sympathetic efferents regulating for instance sweating, piloerec-
tion, and vasoconstriction in the skin.
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Figure 9.2: A block diagram of the algorithm. The APs in the recorded data
are first detected using a MF. Following this, the APs originating from the same
sensory unit are grouped together by means of target tracking using MHT with a
Kalman filter predictor. In the last step, the found tracks are used to estimate some
important parameters using a combined Simplex and LS algorithm.

(MF) was the detector of choice because it is both simple and robust, c. f.
Chapter 2.

2. Tracking – The discrimination step is crucial for the success of this work
and it presented an interesting challenge. We found that a reliable algorithm
can be derived by exploiting the marking phenomenon and tracking the APs
of a particular C-fiber in the responses to the repetitive electrical stimulus;
hence, regarding the discrimination problem as a target tracking problem.
Due to the vital importance of this step, the multiple hypothesis tracking
(MHT) method [13] combined with a Kalman filter [46] predictor was se-
lected because it is commonly considered as the best tracking algorithm,
c. f. Chapter 4 and Chapter 3.

3. Parameter estimation – Once the time course of the latency corresponding to
a particular C-fiber unit is isolated, a parametric model may be fitted to the
data. The current application adjusts an exponential function to the measured
latencies using a combination of the Nelder-Mead simplex algorithm [55]
and the least squares (LS) method.

This chapter is organized as a description of the three main steps of the algo-
rithm. Section 9.2 describes how the detection is done using a MF, c. f. Chapter 2.
Section 9.3 deals with the tracking of the APs using the MHT method, c. f. Chap-
ter 4, and Kalman filtering, c. f. Chapter 3, and describes how the AP amplitude is
incorporated into the tracking algorithm. Section 9.4 describes the latency model
and the parameter estimation. Section 9.5 presents the characteristics and perfor-
mance of the algorithms through simulations and theoretical analysis. Finally, Sec-
tion 9.6 illustrates the performance of the application on actual recordings obtained
from awake human subjects.
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(a) (b) (c)

Figure 9.3: Sample results from the three steps of the algorithm: (a) the detected
APs, (b) the resulting five tracks after applying the tracking algorithm, and (c) the
final trajectories obtained by fitting an exponential function to the tracks.

9.2 Detection

We seek a simple and robust detector with good, not necessarily optimal, perfor-
mance that helps us reaching the goal of simplifying the analysis of the C-fiber
recordings. With this in mind, the most important aspect is to design a working,
fast, and user friendly application. This means that we cannot take all real life
details into account. Instead, based on numerous test runs and a profound knowl-
edge about this type of signals, we have primarily accounted for factors with a
large improvement-cost ratio with respect to the overall performance. For exam-
ple, factors that have a moderate improvement on the overall result, but requires
extensive tuning or exact knowledge of some parameter have been discarded for
obvious reasons.

With these trade-offs in mind, we have decided to make the following four key
assumptions:

Assumption 9.1 Constant AP shape – All APs have the same shape and only the
amplitude of the APs differ among the units.

Assumption 9.2 White noise – The noise is uncorrelated.

Assumption 9.3 Semi-stationary noise – The noise variance may change from
trace to trace, but is constant within each individual trace.

Assumption 9.4 “Sparse” recordings – The energy of any APs in each trace is
negligible compared to the noise energy.

Obviously, there is a huge advantage of making these assumptions in terms of
practical and implementational simplicity as well as computational requirements.
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With these assumptions a static MF detector may be used that does not require the
AP shape and the color of the noise to be estimated from the data to be analyzed.
With Assumption 9.3-9.4, the noise variance is still allowed to change during the
experiment while simplifying the design of the detector. With these two assump-
tions, invariance to the unknown noise variance, see [72], is simply accomplished
by using an estimate of the noise variance that is estimated from the entire trace
where the contribution of the APs is neglected.3

The (theoretical) drawbacks of using these assumptions weigh light in this per-
spective because we know from experience that these assumptions correspond quite
well to the real situation and that the influence of deviations from these assumptins
on the overall performance is small. Differencies in AP shape, for example, are
manifested only as a reduced SNR in the MF output which is easily accounted
for by lowering the detection threshold. The same goes for colored noise, but has
the additional effect of increasing the MF output variance. The latter is easily ac-
counted for by properly tuning the succeeding tracking algorithm. Assumption 9.4,
finally, because any noticeable AP energy is approximately constant over the traces,
the effect in such a case is an over-estimated noise variance that reduces the MF
output and is easily accounted for as above. Note, however, that the SNR of the
MF output, assuming that the APs and the noise are independent, is not changed in
this case since the noise is scaled by the same amount.

9.2.1 Tuning

In order to derive, or tune, the AMFD we need to know the sought signal and
the color of the noise in advance. The latter is elegantly settled under Assump-
tion 9.2 whereas the former is met by noting that under Assumption 9.1 any already
recorded AP may be used as a signal template.

When such a template was extracted from earlier recordings, several manually
detected APs were aligned and averaged to reduce the influence of the noise and
the background activity. The averaged potential was then lowpass filtered to further
reduce the disturbances in the frequency region where no AP energy is expected.
Figure 9.4 shows the resulting signal template and the corresponding Bode plot.

3In the general case, the detector criterion needs to be invariant to scaling of the measurements
and rotation of the measurements in the subspace orthogonal to the signal subspace. In the case
considered here, however, the number of samples used for the estimate is so large and the AP con-
tribution is so small that the estimated noise variance may be treated as a “known” parameter in this
regard.
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Figure 9.4: (a) The template of the C-fiber action potential to be detected, i.e.
the time-reversed impulse response of the MF, and (b) the corresponding Bode
magnitude plot (right).

9.2.2 Noise variance estimation

Although the color of the noise is assumed known (white in this case), its variance
is unknown and need to be estimated from the recorded data. The recordings may,
however, also contain hum from the power supply and surrounding equipment that
yield a bias if not accounted for. By first removing the hum, using a notch filter, a
simple maximum likelihood (ML) variance estimator may be used.

Under Assumption 9.2-9.4 and assuming that the notch is infinitely narrow, the
ML estimate of the noise variance σ̂2 may be calculated using the notched data
samples wn(t) in one trace of length N as

σ̂2 =
1

N

N−1∑

t=0

w2
n(t) . (9.1)

This is still a biased estimate,4 but the bias decreases as the width of the notch
decreases. As we use a narrow notch filter at 50 Hz, the influence of the bias may
be neglected and is not considered further.

Using the ML estimate (9.1) of the noise variance, the impulse response and
the SNR of the matched filter are given by (2.12) and (2.13) with σ exchanged by
σ̂.5

4Noise energy is of course removed by the notch filter and some hum energy is still present.
5Introducing the ML estimate of the variance formally implies that a Kelly test [89] should be

used instead of the generalized likelihood ratio test (GLRT) used here. Moreover, the MF output then
has a t-distribution instead of a normal distribution. However, the number of data points used in the
estimations is so large that these effects have a negligible effect on the result.



178 Chapter 9. Detecting and discriminating C-fiber action potentials

9.2.3 Action potential detection

During analysis, the MF output of each trace is normalized by its noise variance to
yield a measure of the square root of the instantaneous SNR.6 For stationary noise,
this measure is directly proportional to the amplitude of the AP. The benefits of
this design is threefold. First, the detector has a constant false alarm rate (CFAR).
Second, the selection of the detection threshold is simple and may be set by the
operator according to the SNR level of the APs being analyzed. Third, the MF
output is a scaled amplitude estimate and can be used to improve the tracking
performance, see below.

The sampling frequency used is 31.25 kHz and the spectral content of the APs
is concentrated to the frequency range between 500 Hz and 1500 Hz. The matched
filter constitutes an optimized bandpass filter with passband in this frequency range.
The filter output is smooth and the time instants where APs are present may be
obtained using a simple peak finding algorithm that reports all peaks above the
given threshold m0. Such asynchronous detectors were discussed in Chapter 2.

Owing to the bandpass character of this filter, see Figure 9.4, it is immaterial
whether the raw data or the notched data is used as input because the influence
of the hum is negligible in either case. When validating the overall situation and
taking all different aspects, theoretical as well as practical, into account, we have
sided with using the raw data as input to the MF detector.

In Section 9.5 the performance of this MF detector is analyzed in terms of
resolution, variance, detection probability, and false-alarm probability.

9.3 Discrimination

Finding a reliable algorithm to discriminate the detected APs was a challenge be-
cause traditional methods were not suitable. A pattern matching technique, for
example, would have poor performance due to the diminutive differences of the
AP shape in these recordings. Moreover, such a technique would disregard the
latency information provided by the exploitation of the marking phenomenon.

A clustering algorithm, on the other hand, would indeed use this information,
but the dynamics of active C-fibers would be difficult, if not impossible, to handle.

An experienced eye, however, easily takes full advantage of the marking phe-
nomenon and exploits the latency information in subsequent traces by forming
tracks of APs that belong to each other. We decided to mimic this by solving the
association problem as a tracking problem using the MHT method with Kalman

6This is the SNR in the MF output used in the likelihood test and is almost four times larger than

the common measure SNRpp
4

=
(

minimum AP peak-to-peak amplitude
noise root-mean-square value

)2

.
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filter prediction, see below.
Although the tracks may be found using the latency only, the AP amplitude

is utilized to improve the tracking performance. In general, the AP amplitude is
different for APs originating from different C-fiber units because the distances be-
tween the recording electrode and the nerve fibers differ. Using the scaled ampli-
tude estimate that the MF detector provides simplifies the design and has performed
well.

9.3.1 Tracking algorithm – multiple hypothesis tracking

The performance of the tracking algorithm is of vital importance and, hence, we
selected the MHT [69] method because it is recognized as the theoretically best
approach to multitarget tracking problems, c. f. Chapter 4. It’s performance is su-
perior to other methods in applications with heavy clutter and high traffic densities.
In our context, clutter would be spurious APs and false detections that are uncorre-
lated with other APs. High traffic densities means that different C-fibers have very
similar latencies.

As mentioned in Section 4.4, a model of how the AP latencies change from
trace to trace is needed to evaluate the probability of each hypothesis. Here, all
this information is provided by the prediction algorithm and the actual scoring
algorithm is simplified, see below.

Scoring algorithm

Using the Bayesian approach mentioned in Section 4.4.2, the score for a particular
hypothesis is the logarithm of its a posteriori probability scaled in such a way that
an all-false-alarm partitioning of the observations yields a zero score.

To calculate the hypothesis score, we then need the score Li(k) for each track
i in trace k. The general expressions in (4.2) and (4.3) here become

Li(k) = Li(k − 1) + ∆Li(k), k > k0 + 1 (9.2)

∆Li(k)
4
=





ln(1 − P̂D(k)), not updated

ln

[
P̂D(k)

βFT 2π
√

detSi(k)

]
− d2

i (k), updated
(9.3)

with initial values

Li(k0)
4
= ln

[
1 +

βNT

βFT

]
(9.4)

Li(k0 + 1)
4
= ln

βNT

βFT
+ ln

[
P̂D(k)

βFT 2π
√

detSi(k0 + 1)

]
− ln d2

i (k0 + 1) (9.5)
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where P̂D(k) is the estimated probability of detection, βFT and βNT are the false
alarm and the new source density, respectively, and d2

i (k) is the normalized dis-
tance for the observation of track i in trace k defined in (4.4). The matrix Si(k) is
the measurement prediction error covariance matrix for the observation of track i
in trace k. It is obtained from the Kalman predictor.

As the tracking filter needs one update (two observations) to initialize, all po-
tential tracks with a missed detection are rejected. This results in a simplified
score calculation of tentative tracks as given by (9.5). Also, experience has shown
that better performance is achieved when ln d2

i (k0 + 1) is used in (9.3) instead of
d2

i (k0 + 1). This gives a slight preference to tracks with a stable latency.

9.3.2 Prediction algorithm – Kalman filter

Fundamental in any tracking system is the track prediction and filtering. The two
major alternative methods are the Kalman filter [46] and the filter based on in-
teracting multiple models (IMM) [56]. The IMM method is an extension of the
multiple model (MM) approach to handle model switching and often provides the
best performance. The IMM method is suboptimal, however, and in our applica-
tion no model switches occur. This suggests that the MM method would give the
best performance. At present, the Kalman filter is used, but extending this to an
MM based filtering method is straight-forward if required, see Section 3.4.

In addition to this, the Kalman filter has a number of other advantages for use
in tracking applications including:

• The state-space form is used to describe the Kalman filter and gives a recur-
sive implementation that reduces the computational demand.

• The characteristics of the filter is altered by changing only a few key param-
eters. This means that the same filter may be used for varying target and
measurement environments.

• The Kalman filter can be used in applications with varying sampling interval
and missed detections.

• The innovations covariance matrix provides a convenient measure of the es-
timation accuracy required to perform the gating and correlation functions
of the MHT algorithm accurately.

The target model consists of two submodels, the process model and the mea-
surement model, see Chapter 3. In the context of the application presented in this
chapter, the process model describes the target dynamic process and describes how
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the latency and the matched filter peak output change from scan to scan. The mea-
surement model captures the effects of the measurement system as the addition of
measurement noise, for example.

As the process under study is a real physical process assumed to be working
in continuous-time, a model is based on this assumption. To incorporate such a
model into the tracking process, a discrete-time model is produced by sampling the
continuous-time model. The measurements, however, are modeled as a discrete-
time process directly.

Process model

From Figure 9.1 it seems reasonable to assume that the measured latency, denoted
y1(t), may be modeled by

y1(t)
4
= ȳ1(t) + ε(t) (9.6)

ȳ1(t)
4
= y0 +Ae−α0(t−t0), t ≥ t0 (9.7)

where ȳ1(t) is the true but unknown latency, ε(t) is the residual consisting of model
and measurement errors, y0 is the latency at steady state, A is the latency shift due
to stimulation, α0 is the recovery coefficient, and t0 is the time of excitation, here
assumed identical with the start of the track/recovery.

By selecting the true latency ȳ1(t) and its derivative ˙̄y1(t) as state variables,
(9.7) may be written in state space form as

(
˙̄y1(t)
¨̄y1(t)

)
=

(
0 1
0 −α0

)(
ȳ1(t)
˙̄y1(t)

)
, t ≥ t0 (9.8)

ȳ1(t0) = y0 +A (9.9)
˙̄y1(t0) = −α0A (9.10)

which is an initial value problem with (9.7) as its solution. It is simple to augment
this deterministic state space model with an additional state that describes the AP
amplitude assumed to be constant.

To account for model errors like errors in the unknown parameter α0 and slow
variations in the latency and the AP amplitude, it is conventional to add noise terms
to the uncertain states [12]. The deterministic continuous-time state space model
(9.8) augmented with the AP amplitude is thus replaced by a stochastic continuous-
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time state space model, c. f. Section 3.1

dxc(t) = Axc(t) dt+ Gdw(t), t ≥ t0 (9.11)

A =




0 1 0
0 −α 0
0 0 0


 (9.12)

G =




0 0
1 0
0 1


 (9.13)

where xc(t) is the three-dimensional continuous-time state vector made up of
the latency ȳ1(t), its derivative ˙̄y1(t), and the MF output

√
SNRmf . The two-

dimensional entity dw(t) is the Wiener increment of the two-dimensional Wiener
process w(t) and the matrix A is the state transition matrix, in which α should be
as close as possible to the true recovery coefficient α0. This model is very similar
to the one used in Chapter 3, but the modeling of the process noise is different, see
below.

The latency part of the model could also be viewed as a first order system driven
by an exponentially autocorrelated zero mean process noise. Note that the limit
α = 0 results in the common first order white noise acceleration model described
in [12].

The main difference between the model used in this chapter and the example
model in Section 3.3 is the modeling of the process noise for the first subsystem
that models the latency. Because the latency model is the stochastic state-space
version of the model in (9.7), the process noise here accounting for the latency
modeling errors are largest at the start of the decay and are almost zero at steady
state. This is represented by defining the incremental variance of the first element
of dw(t), denoted dw1(t), as

σ2
λ1

(t) dt
4
= E (dw1(t))

2

= σ2
λ1

(1 + eβ0−β1(t−t0)) dt, t ≥ t0 (9.14)

where βi are tuning parameters. This results in a process noise that is high at onset
and decreases exponentially to its minimum. Note that this affects the latency part
of the system only. For the modeling of the amplitude estimate, a constant incre-
mental variance σ2

λ2
dt is used because we assume that the amplitude is constant or

is varying slowly.
Consequently, the incremental covariance matrix Λ(t) dt of the Wiener incre-
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ment dw(t) is dynamic and is given by

Λ(t) dt
4
= E dw(t)dwT (t) =

(
σ2

λ1
(t) 0

0 σ2
λ2

)
dt . (9.15)

The discrete-time process model

The utilization of the marking phenomenon, i.e., emitting electrical impulses pe-
riodically and measuring the latency of the evoked APs, may be interpreted as a
sampling of the (continuous-time) latency of the excited units with a sampling in-
terval equal to the period of the emitted stimuli. The time difference between the
emission of the impulse and the detection of the evoked AP of a particular C-unit
is then a measurement of the current latency of this unit. Any additional APs mani-
fest themselves by increased time differences corresponding to an increased C-unit
latency in accordance with the marking phenomenon.

By sampling the continuous-time model, see Section 3.1.2, we obtain the pro-
cess model in trace k as

x(k + 1) = Fx(k) + v1(k), k ≥ k0
4
=
t0
T

(9.16)

where T is the period of the repetitive electrical stimulation. The matrix F is the
transition matrix, v1(k) is a three-dimensional vector that represents the process
noise modeled as zero-mean, white-noise Gaussian processes with covariance ma-
trix Q1(k). These entities are defined in (3.9)-(3.12) which in this case become,
see Appendix 3.B and Appendix 9.A,

F =




1 α−1(1 − e−αT ) 0
0 e−αT 0
0 0 1


 (9.17)

Q1(k) =




q
(1)
11 q

(1)
12 0

q
(1)
21 q

(1)
22 0

0 0 q
(1)
33


Σ0 +




ρ11 ρ12 0
ρ21 ρ22 0
0 0 0


Σ(kT ) (9.18)

where q(1)ij , Σ0, ρij , and Σ(kT ) are given in Appendix 9.A.

Measurement model

The measurement model is identical to the one given in Section 3.3 which is simply

y(k) = Hx(k) + v2(k), H =

(
1 0 0
0 0 1

)
(9.19)
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where y(k) is a two-dimensional measurement vector containing the measured
latency and the MF output. The two-dimensional vector v2(k) is the measurement
noise, modeled as independent zero-mean white-noise Gaussian processes with a
known constant 2|2 covariance matrix given by

Q2 =

(
q
(2)
11 0

0 q
(2)
22

)
. (9.20)

Finally, the process noise and the measurement noise are assumed independent
which means that

Q12 =




0 0
0 0
0 0


 . (9.21)

Initialization and consistency

Initial estimates of the state and its covariance matrix need to be found before
applying the Kalman algorithm. Using two of the first measurements it is possible
to find an MMSE estimate of the initial values, see Section 3.2.2 for details. To be
able to use the gating technique, see Section 4.4.4, intermediate estimates are used
as presented in Appendix 9.B.

Moreover, the model parameters need to be tuned to yield consistent estimates.
It is advisable to check this using the methods described in Chapter 3.

9.3.3 Detection-probability estimation

The detection probability PD may change during the experiment and needs to be
estimated for each target and trace. Since the detection thresholds used in practice
are m̃0 ≈ 5 and there seems to be a minimal difference between the synchronous
MF detector (SMFD) and AMFD performance for such thresholds, c. f. Figure 9.8,
we use the SMFD expression in (2.26) to estimate the instantaneous detection prob-
ability p̂D(k) in trace k where the MF output is used as an estimate of the square
root of the instantaneous SNR. Hence, we have defined p̂D(k) as

p̂D(k)
4
= 1 − Φ(m̃0 − hT

2 x̂(k|k)), k > k0 (9.22)

where m̃0 is selected by the operator, hT
2 is the second row of the measurement

matrix H and x̂(k|k) is provided by the Kalman filter. Thus, hT
2 x̂(k|k) is the

Kalman filter estimate of the square root of the instantaneous SNR.
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The consequence of this choice is that low SNR APs get their detection prob-
ability over-estimated which, in turn, lead to a larger “cost” for missed detections.
This has, however, not been a problem in practice.

By lowpass filtering the instantaneous detection-probability estimate, the detec-
tion-probability estimate is improved in terms of tracking performance. Since the
detection-probability estimate is non-optimal and because extreme detection prob-
abilities yield bad tracking, the operator may also specify minimal and maximal
values for the detection probability estimate. This is summarized by

P̄D(k)
4
= (1 − λPD

)P̂D(k − 1) + λPD
p̂D(k) (9.23)

P̂D(k)
4
= max(PD,min,min(PD,max, P̄D(k))), k > k0 (9.24)

where λPD
is a forgetting factor and P̂D(k0) may set by the operator. This estimate

has, however, a positive bias for small APs as the MF output values below the
threshold do not contribute. The bias may be calculated and the estimate corrected,
but it is believed to be of small importance (to the tracking result) and is therefore
not considered.

The actual detection probability, from the tracker’s perspective, is the mutual
probability of the MF detection and the gating. Normally, only large gates are
considered and the effect of the gating is consequently neglected.

9.4 Parameter estimation

Estimating model parameters of a particular model once the data is available is, in
principle, straight-forward. However, the estimation is complicated somewhat due
to the nonlinear data model used here. In the model (9.7) the parameter α0 enters
nonlinearly, whereas the two parameters y0 and A enter linearly. Our approach
is an iterative method in which the nonlinear term is estimated using the simplex
method. For each step in the simplex algorithm, the two linear terms are estimated
through the LS method and the error norm is returned.
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9.4.1 Model function

The model function ϕ̄(θ) and the data ϕ are defined by

ϕ̄(θ) =
(
ȳ1(k0,θ) . . . ȳ1(kN−1,θ)

)T
(9.25)

ϕ =
(
y1(k0) . . . y1(kN−1)

)T
(9.26)

ȳ1(k,θ) = y0 +Ae−α(k−k0)T , k ∈ K (9.27)

θ
4
=

(
α y0 A

)T
(9.28)

K
4
= {k0, k1, . . . , kN−1} (9.29)

where ȳ1(k,θ) is a parametrized model of the latency defined in accordance with
the assumed time course of the latency in (9.7). Each element y1(ki) is the mea-
sured latency (the first element of the measurement vector y(ki)) of the AP as-
signed to this track in trace number ki. The set K contains all trace numbers for
which an AP has been assigned to this track and N is the number of assignments.

The set of (nonlinear) regression equations may then be written

ϕ = ϕ̄(θ) + ε (9.30)

where ε is an N -dimensional residual column vector. This system of equations is
solved to find the parameter estimate θ̂ that minimizes 1

N εT ε.
In the model (9.27) the parameter α enters nonlinearly, whereas the two param-

eters y0 and A enter linearly. The parameters is estimated by an iterative method
in which the nonlinear term is estimated using the simplex method [23] [55]. For
each step in the simplex algorithm, the two linear terms are estimated through the
LS method and the error norm is returned. The simplex method thus seeks the
parameter α through

α̂ = arg min
α

∑

k∈K

∣∣∣y1(k) − ȳ1(k, α|ŷ0, Â)
∣∣∣
2
. (9.31)

The two linear terms ŷ0 and Â are estimated with the LS method by solving
the over-determined system of equations

Jlin(α)

(
ŷ0

Â

)
= ϕ (9.32)

where Jlin is found by deriving the Jacobian [68] of the parametrized model. The
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Jacobian is defined by

J(θ)
4
=

∂

∂θT
ϕ̄(θ) ≡

(
jα(α,A) Jlin(α)

)
(9.33)

jα(α,A) =




0

−(k1 − k0)TAe
−α(k1−k0)T

...
−(kN−1 − k0)TAe

−α(kN−1−k0)T


 (9.34)

Jlin(α) =




1 1

1 e−α(k1−k0)T

...
...

1 e−α(kN−1−k0)T


 . (9.35)

The initial value of the recovery constant α is set to the slope coefficient of the
linear regression of the data.7

9.4.2 Confidence intervals

In [36], confidence intervals of the estimates are derived for a parametrized vector
function ϕ̄(θ0) where θ0 represents the true parameter vector. Given a parameter
estimate θ̂ and some scalar function φ(θ), a confidence interval Iϑ with confidence
level ϑ of the scalar φ(θ0) is

Iϑ = {φ(θ) | P (φ(θ0) ∈ Iϑ) = 1 − ϑ} (9.36)

=
[
φ(θ̂) ± tN−3;1−ϑ/2

√
s2Φ̂ĈΦ̂T

]
(9.37)

Ĉ
4
=

(
JT (θ̂)J(θ̂)

)−1
(9.38)

Φ̂
4
=

∂

∂θT
φ(θ)

∣∣∣∣
θ=θ̂

(9.39)

s2 =
1

N − 3

(
ϕ − ϕ̂(θ̂)

)T (
ϕ − ϕ̂(θ̂)

)
(9.40)

where tN−3;1−ϑ/2 denotes the upper 1 − ϑ/2 critical point of the t-distribution
with N − 3 degrees of freedom. The confidence interval of the estimates is thus

7This results in a good initial estimate for short (with respect to the recovery constant) data sets,
but has the drawback of yielding worse estimates for long data sets.
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calculated as

I
(y0)
ϑ = ŷ0 ± tN−3;1−ϑ/2

√
s2ĉ11 (9.41)

I
(A)
ϑ = Â± tN−3;1−ϑ/2

√
s2ĉ22 (9.42)

I
(α)
ϑ = α̂± tN−3;1−ϑ/2

√
s2ĉ33 (9.43)

where ĉii are the diagonal elements of Ĉ in (9.38). Note that the matrix Ĉ may be
badly conditioned and that the columns in J(θ̂) could need a rescaling. Unfortu-
nately, the formulas above are only asymptotically valid and the above confidence
intervals estimates are larger than the actual confidence intervals for the relatively
short track segments used in the application at hand.

9.5 Simulation results

The framework presented in Chapter 2 is used below to assess the performance and
characteristics of the MF detector as its properties are essential to the tuning of the
Kalman filter and also affect the tuning of the MHT algorithm.

9.5.1 The matched-filter detector

Using the techniques described in Section 2.2, we here present the performance of
the AMFD tuned with a signal template acquired from real recordings as described
in Section 9.2.1. Throughout the simulations of the matched filter, 1000 Monte
Carlo runs were performed with the detection threshold set to m0 = 1 unless
stated differently.

To find the bandwidth ratio of the signal template, see (2.20) in Section 2.2.1,
we use the following definitions for the bandwidth B and the center frequency f0

Snorm(f)
4
=

S(f)

maxf S(f)
(9.44)

2B
4
=

∫ ∞

0
|Snorm(f)|2 df (9.45)

f0
4
=

1

2B

∫ ∞

0
f |Snorm(f)|2 df (9.46)

where S(f) is the spectrum of the signal template in Figure 9.4. The bandwidth
B as defined above is often called the noise bandwidth. To find the spectrum S(f)
we take the acquired signal template, pad it with zeros to a length of 1024 samples,
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Figure 9.5: (a) The estimated mean value of the AMFD output (solid) and the
theoretical mean value of the SMFD output (dotted) as a function of the SNR. (b)
The estimated variance of the AMFD output and the theoretical variance of the
SMFD output (dotted) as a function of the SNR. The results were obtained from
104 Monte Carlo runs.

and take the discrete Fourier transform. Using this technique, we obtain

B = 0.667 [kHz] (9.47)

f0 = 1.15 [kHz] (9.48)

γ =
f0

B
= 1.72 . (9.49)

Detection and false-alarm probability

In several of the equations constituting the MHT algorithm, the detection and false
alarm probabilities are key parameters. Here we present the performance of the
AMFD compared to the SMFD with respect to detection and false alarm probability
to expose any performance loss due to the unknown arrival time. Most results
are actually similar to the results from the generic AMFD presented in Chapter 2
despite the signal templates being different. Hence, we present only the properties
that are different and of interest to this application.

The diagrams in Figure 9.5, from 104 Monte Carlo runs, clearly show the re-
sults expected from Chapter 2, c. f. Figure 2.4 (γ = 1.72). The main difference is
that for the AMFD used here, the variance for small SNRs is larger, i.e., closer to
the SMFD variance (=1), compared to the corresponding AMFD (γ = 1.72) from
Chapter 2.

Figure 9.6 is a replica of Figure 2.7 where the estimates, using 104 Monte
Carlo runs, of the mean and variance of the AMFD used here when no signal is
present are inserted. The result is an improvement compared to the generic AMFD
presented in Chapter 2; the mean is closer to zero and the variance is closer to one.
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Figure 9.6: This figure is a replica of Figure 2.7 where the estimates, using 104

Monte Carlo runs, of the mean (+) and variance (×) of m(n̂a) when no signal
is present are plotted as a function of the bandwidth ratio γ. The values for the
AMFD used here are marked (◦).
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Figure 9.7: The figure shows the estimated receiver operating characteristics
(ROC) curve of the AMFD (solid), the ROC curve using the approximative false
alarm and detection probabilities of the AMFD (dashed), and the theoretical ROC
curve of the SMFD (dotted) for the SNR levels -20 dB, 0 dB, and 10 dB (curves
right to left).

In Figure 9.7 the estimated receiver operating characteristics (ROC) curves of
the AMFD for the SNR levels -20 dB, 0 dB, and 10 dB are shown. As can be seen
in the figure, the AMFD performs in general well but has a slight performance loss
compared to the SMFD, due to the unknown arrival time na.

Figure 9.8 compares the detection probability of the AMFD with the SMFD
as a function of the SNR for different false-alarm probabilities. The threshold
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Figure 9.8: The figure shows the estimated detection probability of the AMFD
(solid) and the theoretical value of the SMFD (dotted) as a function of the SNR.
The threshold m0 of the SMFD was set to achieve the false-alarm probabilities
(top to bottom) 0.2, 0.05, and 0.001, corresponding to m0 = 0.84, 1.6, 3.1, re-
spectively, whereas the threshold m̃0 of the AMFD was set by the transformation
(2.30) to yield equal false-alarm probabilities.

m0 of the SMFD was set to achieve the false-alarm probabilities 0.2, 0.05, and
0.001, corresponding to m0 = 0.84, 1.6, 3.1, respectively. The detection threshold
transformation (2.30) is used to yield equal false-alarm probabilities and we see
that the performance loss is limited to less than 3 dB which is acceptable for this
application. At higher thresholds and higher SNR levels, the results suggests even
that the two detectors are comparable in performance. A note of precaution is,
however, necessary here; see Section 2.2 for details.

In Figure 9.9 the false-alarm intensity of the AMFD used here is shown and
compared to the AMFDs in Chapter 2. The figure is a replica of Figure 2.10 where
the estimated false-alarm intensity based on 106 Monte Carlo runs for the AMFD
used here is inserted using the detection threshold m0 = −∞. This threshold
yields the maximum false-alarm intensity because P̃FA = 1. As the figure clearly
shows, the false-alarm intensity is almost 50 % higher because the MF used here
does not totally suppress the frequencies above f0 +B, c. f. Figure 9.4, which was
the case in Chapter 2.

Accuracy

To tune the Kalman filter properly, we need to know the variance of the latency
measurements, i.e. the accuracy of the AMFD. Using the techniques described in
Section 2.2.3, the accuracy of the AMFD is investigated here.
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Figure 9.9: This figure is a replica of Figure 2.10 where the estimated false-alarm
intensity based on 106 Monte Carlo runs are shown as a function of the bandwidth
ratio γ using the detection threshold m0 = −∞. This threshold yields the max-
imum false-alarm intensity because P̃FA = 1. The false-alarm intensity for the
AMFD used here is marked (◦).

When investigating histograms of the error in the estimated arrival time, it
seemed reasonable, for high SNR levels, to assume that it is Gaussian and zero
mean. For smaller SNRs, the error becomes more and more uniformly distributed
over the detection interval.

Figure 9.10 clearly shows this behavior where the variance is small for high
SNRs and increases when the SNR decreases. As expected, the variance ap-
proaches the variance of a uniform distribution over the simulated interval.

Resolution

An important property of the AMFD is its resolution capability because it influ-
ences the robustness of the tracking of the APs. Analogous to Section 2.2.4, we
here present the resolution capabilities of the AMFD used here.

Figure 9.11 (b) shows the probability of resolving both signals. As expected,
this probability decreases to zero for small time differences. The probability of
detecting at least one AP increases instead, because the APs add and interfere con-
structively. In between, there is a dip in the detection probability between 0.2 ms
and 0.4 ms (for both APs) where the two APs interfere destructively with one an-
other.

From this, we conclude that the tracker must be robust with respect to changes
in the detection probability at track crossings. If not, tracks may be lost or swapped.
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Figure 9.10: The figure shows the estimated variance (solid) of the arrival time
with the MF output oversampled ten times prior to the detection. For decreasing
SNR levels, the variance increases asymptotically towards the variance of a uni-
form distribution over the detection interval (dashed). For comparison, the squared
(original) sample period (1/f 2

s ) is shown (dotted).
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Figure 9.11: Two identical signals are recorded. The diagrams show the estimated
probabilities of detecting (a) at least one signal and (b) both signals for differ-
ent time separations and SNR levels, -20 dB (dotted), 0 dB (dash dotted), 10 dB
(dashed), and 20 dB (solid).
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Figure 9.12: This figure is a replica of Figure 2.12 showing the product 2f0∆tR
(solid) where ∆tR is the Rayleigh resolution, the primary sidelobe rejection
(dashed), and global sidelobe rejection (dash-dotted). Also included is the esti-
mated resolution based on Monte Carlo simulations yielding a detection proba-
bility PD = 0.85 (+) with the one for the AMFD used here marked (◦). The
Rayleigh resolution (×) and the global sidelobe rejection (2) for the AMFD used
here are also shown.

Applying the resolution definition (2.31), we here obtain

∆lat = 0.36 [ms] . (9.50)

In Figure 9.12 the resolution is compared between the AMFD used here and
the AMFD used in Chapter 2. As the figure shows, the Rayleigh resolution for the
AMFD used here and for the AMFD used in Chapter 2 are identical. The PD =
0.85 resolution, however, is significantly lower. Moreover, the global sidelobe
rejection of the AMFD used here is close to the primary sidelobe rejection of the
AMFD used in Chapter 2.

9.6 Experimental results

As stated in Section 9.1, the recordings are processed in three steps by detecting
the APs in the recorded traces, tracking their latency changes, and estimating their
latency parameters.

This section presents the performance of these steps when applied to real record-
ings from human subjects. First, it is made clear that the MF output has an im-
proved detection capability compared to the original recording. Following that,
the performance of the MHT tracker is illustrated in two different scenarios, one
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Figure 9.13: The output of the matched filter (top) when applied on a part of scan
5 in the recording in Figure 9.17 (bottom). With the same threshold setting, four
detections are reported (+). Note also the 50 Hz hum in the recorded data.

simpler and one harder. Finally, the estimated parameters of one of the active units
found by the tracker are presented.

9.6.1 The matched-filter detector

Despite the erroneous assumptions when deriving the AMFD, the anticipated re-
duction in detection performance has not been a problem in practice. The AMFD is
robust in terms of different AP shapes and there is no need for retuning it for differ-
ent recordings. In addition, it has been incorporated in the on-line data acquisition
system to facilitate the experiments.

In Figure 9.13 a part of the fifth scan in Figure 9.17 is shown. As may be seen
from Figure 9.13, the MF output is an improvement to the original data. With the
detections from several scans (see Figure 9.17), it may be concluded that the four
reported peaks (marked with +) could correspond to four AP detections and that
even the low amplitude APs are detected without decreasing the detection threshold
down to the noise level.

From Figure 9.13 it is clear that a notch filter must be used to remove the 50 Hz
hum in order to avoid a biased noise variance estimate (9.1).

9.6.2 The MHT/Kalman tracker

The most critical part of the overall system is the tracking of the different C-units.
For this application to be useful, the number of tracking errors has to be small.
Some errors are allowed because erroneous assignments may be corrected by the
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Figure 9.14: The diagrams show the exponentially modeled (“true”) output
hix(k) (dotted), the actual measured output yi(k) (+), the filtered output
hix̂(k|k) (solid), and the predicted output hix̂(k|k − 1) (×), where hi is the ith
row in H. In each diagram, we see (a) the latency of the measurement using the
MMSE initialization, and (b) the MF output of the measurement using the MMSE
initialization.

operator prior to the statistical analysis. Below, two examples are presented: one
simple and one more complex.

A two unit recording

This basic example involves two well-separated units: one with high and one with
low amplitude, see Figure 9.1. After matched filtering, we obtain the data shown
in Figure 9.16 where each dot represents a MF output above the selected detection
threshold τ = 5. First, both units were inactive and their latencies were constant
at about 303 ms and 360 ms, respectively. At trace 13, the high amplitude unit
was activated by a mechanical stimulus and its latency increased dramatically. The
latency then slowly recovered to the level before the activation.

To get the best tracking result possible, the Kalman filter settings used on this
recording were tuned to their “optimal” values for this particular unit using the
consistency analysis described in [12]. The “true” states needed for this were de-
rived by fitting an exponential model similar to (9.6) to the active unit’s recovery
trajectory, see Figure 9.14. In order to obtain uncorrelated residuals, however, it
was necessary to use two exponential terms. The Kalman filter was subjectively
tuned to give as consistent estimates as possible and the following parameters were
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Figure 9.15: Consistency tests, see Section 3.2.3, for the target model on the active
unit’s recovery trajectory in Figure 9.16. The tests are (a) the average NEE test,
(b) the average NEES test, (c) the average NIS test, and (d) the sample IAC test.

selected in the model (9.11)-(9.21) as

α = 0.0375 [ms−1] β1 = 0.05 [ms−1]

σ2
λ1

= 2 · 10−5 [ms−1] q
(2)
11 = 0.05 [ms2]

σ2
λ2

= 10−7 [ms−1] q
(2)
22 = 1 .

β0 = 3

(9.51)

The consistency tests, see Section 3.2.3, using these parameters are shown in
Figure 9.15. As the figure shows, the model passes the tests, but the confidence
intervals are so large that its value is limited. Using a qualitative analysis, however,
we see that the NEES and NIS tests are close to rejection around 70 s. From the
realisation in Figure 9.14(b), we see also that the residuals in the amplitude model
are increased which may explain this behavior.

In principle, a robust Kalman filter setting that is optimal for all units is desired.
Experience has shown, however, that this is not crucial to the performance (see, for
example, below).

As shown in Figure 9.16, the algorithm successfully tracked both units. Note
that the track of the low amplitude unit was not lost despite that APs were missed
in some traces.

Note also the two high amplitude AP detections in trace 13 and 14 not assigned
to any track. They probably originated from the high amplitude unit, but because
they were found in the traces directly after the activation of the unit, it is not clear
whether they corresponded to the electrical impulses, the mechanical stimulus, or
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Figure 9.16: The figure shows the confirmed tracks of the tracker when applied
to the two C-fiber unit recording in Figure 9.1 (SNRpp ≈ 6.8 = 8.3 dB). The
two perspectives show the time course of the latencies of the units (left) and the
amplitude information of the detected APs where the difference between the two
units is clearly seen (right). The APs with an MF peak output above 11 (dash-
dotted, right) are marked (×) as well as the APs associated with the unit to the
right (3). For comments on the two marked APs in trace 13 and 14, see the text.

some spurious after effects of the mechanical stimulus. Hence, this result is con-
sidered as “optimal” or at least near “optimal”.

If only the high amplitude unit had been of interest, the tracking would have
been simplified by choosing a higher threshold. For example, using τ = 11, only
the ×-marked APs in the diagrams of Figure 9.16 would have been detected and
processed.

The good result despite the low threshold is a strength that is important in more
complex situations.

A multi-unit recording

This example is more complex and more realistic and involves several C-units with
crossing trajectories. Several of the units were inactive during the recording, and
one of the units (drawn with a thick line) was strongly activated between trace
11 and trace 12, see Figure 9.17. Moreover, there were two spontaneously active
sympathetic C-units that may be recognized by their more irregular behavior.

It is evident from Figure 9.17 that a good tracking result was obtained for the
activated unit as well as for the inactive ones. In this example, no parameter es-
timation was performed to tune the algorithms. Instead, the algorithm parameters
were identical to the ones used in the previous example.

Moreover, the importance of the amplitude information should be obvious as
the latency trajectory of the active unit crossed the two sympathetic units, but their
amplitudes differed.
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Figure 9.17: A result of the current algorithm where several units were recorded
with crossing trajectories (SNRpp ≈ 4.0 = 6.0 dB). Both the time course (top
left) and the amplitude information (top right) of the detected APs are shown.
The tracking result is included and the activated unit is marked with a thick line
(bottom left and bottom right). The method handled crossing tracks well because
the amplitudes of the APs differed.

Note also the tracker’s ability to discriminate between the two tracks at about
440 ms (trace 20-30) despite their closeness and low SNR levels.

Finally, note the lost track between trace 45 and 46 (latency 440 ms). This
tracking error may, however, be corrected by the operator prior to the parameter
estimation.

From the perspective of the researchers carrying out these experiments, this is
a really good result. The otherwise manually task of discriminating the APs is here
quickly performed automatically and reliably within minutes.

9.6.3 The parameter estimation

Fitting an exponential curve to a particular track is straight-forward once the data is
discriminated and this issue is not pursued in any detail. As an example, however,
the results of applying the parameter estimation methods on the latency data of
the active unit’s trajectory in Figure 9.16 are presented in Table 9.1 along with
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confidence intervals.

Table 9.1: Parameter estimation of the active unit in Figure 9.16. The residuals
turned out to be neither white nor Gaussian.

Parameter Value Conf. interval

y0 [ms] 305.4 [305.1, 305.7]

A [ms] 19.44 [19.06, 19.82]

α [ms−1] 0.0390 [0.0369, 0.0411]

s2 [ms2] 0.026 N/A

9.7 Discussion

An application of matched filtering and the MHT method to estimate parameters
of human nerve C-fiber APs was presented. The objective of the algorithm was to
automate the classification of recorded APs in order to increase the efficiency of
the analysis of these recordings.

The APs were successfully detected by means of an MF constituting a ML-
CFAR detector. Even APs with amplitudes of the same order of magnitude as the
peaks of the noise were detected correctly with a reasonably low false alarm rate.
This is an improvement to the previously used nonlinear “noise-cut” filter [93] that
amplified only the part of a signal that was above a certain magnitude and thus
removed the middle, noisy portion of the signal. Consequently, it did not work
well for APs that were of the same order of magnitude as that of the noise itself.

The discrimination between APs originating from different C-fiber units was
carried out using the MHT method as described in [13]. Only some minor changes
were introduced to adapt the method to the application described. The results cor-
responded well with what an experienced physician considers to be a “correct”
result. Several years of experience also show that the classification is in general
correct and that the need for operator intervention is limited.

The estimation of the model parameters was straight-forward using an expo-
nential decay model. The combination of the simplex method and the LS method
worked well even for short recovery segments. The estimated parameters have
shown to be of limited value to the physician, however.

In spite of the good performance, there are some aspects that could be im-
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proved. In the MF derivation, for example, the noise was assumed to be white.
As this is not the case in real recordings, the color of the noise should have been
considered when the MF impulse response was tuned. An obvious disadvantage
with considering the noise color is the possible requirement on estimating it from
the data for each experiment which would be very time consuming. Despite this
deficiency, the static MF detector has shown to perform well on real recordings as
well as to be robust to a wide range of AP shapes. The practical advantages with
such a simple and robust detector should be clear.

The most obvious drawback of the MHT algorithm is its exhaustive computa-
tional and storage requirements. In the cases considered so far, these requirements
have, however, not been a limiting factor. If they were, the track oriented MHT
implementation could be used as its computational and storage requirements are
less exhaustive [15] [98].

The reason for choosing the MHT method in spite of its complexity is that it is
considered to be one of the best tracking methods regarding to performance. Other
methods have various shortcomings, for example, the low track maintenance of the
nearest neighbor (NN) association method, and the typical track switching behavior
of the joint probabilistic data association (JPDA) method are not acceptable [21].

Another drawback of the current implementation is its dependency on errors
in the model parameter α that represents an a priori value of the recovery time
constant of the latency. It is reasonable to believe, however, that introducing robust
filtering methods [91] [64] or replacing the Kalman predictor with an multiple
model (MM) based predictor would make the filtering less sensitive to differences
in the recovery constant. Implementing the MM approach is probably the most
straight-forward because the number of observations to initiate the predictor is kept
low. Otherwise, some iterative initialization procedure would have to be included.

In summary, the goal of simplifying and improving the efficiency of the analy-
sis of the human nerve C-fiber recordings was reached. The computer application
developed based on the algorithms presented in this paper has already shown to
be useful to the research team. In the practical cases considered so far, the overall
performance of the application has been excellent.
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Appendix 9.A Derivation of the discrete-time process-noise
covariance matrix

The covariance matrix Q1(k) of the sampled process noise is defined by (3.11)
and (3.12). Proceeding as in Appendix 3.C with A and G as defined in (9.12) and
(9.13), respectively, we obtain

Q1(k)
4
= E v1(k)v

T
1 (k)

=

∫ T

0
eA(T−τ)GΛ(kT + τ)GT eA

T (T−τ) dτ

=

∫ T

0
eA(T−τ)




0 0 0
0 σ2

λ1
(kT + τ) 0

0 0 σ2
λ2


 eA

T (T−τ) dτ . (9.52)

Inserting the expression for σ2
λ1

(t), c. f. (9.14), we may write

Q1(k) =

∫ T

0
eA(T−τ)




0 0 0

0 σ2
λ1

(1 + eβ0−β1(kT+τ−t0)) 0
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 eA
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=
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0
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 eA
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eβ0−β1(kT+τ−k0T ) 0

0 0 0
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T (T−τ) dτ
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b2(τ)e−β1τ a(τ)b(τ)e−β1τ 0
a(τ)b(τ)e−β1τ a2(τ)e−β1τ 0

0 0 0


 dτ Σ(kT ) (9.53)

where q(1)ij and Σ0 are defined in (3.89)-(3.92) and (3.87), respectively. As in Ap-

pendix 3.C, a(τ) = e−α(T−τ) and b(τ) = α−1(1 − e−α(T−τ)). The matrix Σ(kT )
is defined as

Σ(kT )
4
=




1 0 0
0 1 0
0 0 0


σ2

λ1
eβ0−β1(k−k0)T . (9.54)
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Evaluating the second integral we obtain the final result

Q1(k) =




q
(1)
11 q

(1)
12 0

q
(1)
21 q

(1)
22 0

0 0 q
(1)
33


Σ0 +




ρ11 ρ12 0
ρ21 ρ22 0
0 0 0


Σ(kT ) (9.55)

where q(1)ij and Σ0 are defined in (3.89)-(3.92) and (3.87), respectively, and

ρ11 = α−2
(
β−1

1 (1 − e−β1T ) − 2(β1 − α)−1(e−αT − e−β1T )

+ (β1 − 2α)−1(e−2αT − e−β1T )
)

(9.56)

ρ12 = ρ21 (9.57)

= α−1
(
(β1 − α)−1(e−αT − e−β1T )

− (β1 − 2α)−1(e−2αT − e−β1T )
)

(9.58)

ρ22 = (β1 − 2α)−1(e−2αT − e−β1T ) (9.59)

which concludes the derivation of the discrete-time process noise covariance matrix
Q1(k).

Appendix 9.B Intermediate state-vector estimate and its
covariance matrix

The intermediate state vector x̂(k0+1|k0) and its “covariance” matrix P(k0+1|k0)
are needed for the gating of the first candidate update, but they can not be properly
calculated because the Kalman filter is initialized first at k = k0 +1. Nevertheless,
practical values, although ad hoc, may be calculated through

x̂(k0 + 1|k0) =




1 0
0 0
0 1


y(k0) (9.60)

P(k0 + 1|k0)
4
=

(
P11 021

012 P22

)
(9.61)

P11 =

(
1 0
0 0

)
(ẏ

(1)
maxT )2

G
(9.62)

P22 = 2q
(2)
22 (9.63)

where ẏ(1)
max is the maximum latency derivative that should be allowed in the gating

condition and G is the gate size.
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Appendix 9.C MHT parameters and tuning

For the interested reader, the MHT parameter settings used in this Chapter are listed
in Table 9.2.

Table 9.2: MHT parameters

Description Parameter Value

A priori detection probability P̂D(k0) 0.6

Min detection probability P̂D,min 0.5

Max detection probability P̂D,max 0.9999

Forgetting factor λPD
0.1

New target intensity βNT [ms−1] 10−7

False target intensity βFT [ms−1] 2.5 · 10−5

Gate size G 12

Deletion score Ldel 0

Deletion miss count Ndel 3

Confirmation score Lconf 6

Root node depth Nprune 3

Max number of hypotheses Nmax 16

Latency process variance σ2
λ1

[ms−1] 2 · 10−5

Amplitude process variance σ2
λ2

[ms−1] 10−7

Process noise constant β0 3

Process noise decay β1 0.05

Latency measurement variance q
(2)
11 [ms2] 0.05

Amplitude measurement variance q
(2)
11 1

Max latency derivative ẏ
(1)
max 3

Recovery constant α [ms−1] 0.0375

Stimulation period T [ms] 4



CHAPTER 10

Summary and future work

APPLYING a signal processing approach to the analysis of neurophysiological
signals has been challenging due to the competition met from the presently

available algorithms. These are well-crafted, numerical algorithms, specifically
designed for a particular problem, that often already provide a good balance in
the trade-off between practical usability on one hand and resulting accuracy on the
other. More subtle competition may involve the automation of a time consuming
manual analysis because the analysis algorithm must provide at least (nearly) as
accurate results as the experienced analyst. Otherwise, the gain in analysis time is
quickly consumed by the need for audits and error corrections.

These challenges have resulted in the algorithms presented in this thesis be-
ing quite elaborate and complex. General signal processing methods used in the
applications are presented in Part I, Methods, and consists of Chapter 2-5.

The applications make up the main contribution of this thesis and span over
continuous-time and discrete-time modeling, prefiltering through Wiener filter de-
sign, matched filter detection, Kalman filtering and prediction, and signal classifi-
cation/discrimination using multiple target tracking. This contribution is found in
Part II, Applications, where basically three tasks are addressed. Below, we refer to
these as modeling, prefiltering and parameter assessment, and data detection and
classification.

10.1 Modeling

In Chapter 6 and Chapter 7, models for simulating the acquisition of the EMG
signal are presented. In Chapter 6 the single muscle fiber’s contribution, the action
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potential (AP), to the EMG signal was modelled.
The shape and amplitude of the AP depend on obvious factors such as the po-

sition of the electrode in relation to the muscle fiber and the physical dimensions
of the electrode. From a diagnostic perspective, factors such as muscle fiber dia-
meter and conduction velocity are most important. Further parameters involve the
actual physical characteristics of the fiber and the volume conductor within which
the muscle fiber is residing. Examples of these are the length of the muscle fiber,
the conductance of the fiber as well as of the medium, and the disturbances caused
by the presence of the recording electrode.

In the presented model, the volume conductor was assumed to be infinite and
having an anisotropic conductance. Based on a model of the intracellular potential,
a transmembrane current lumped to the center of the fiber was derived.

The transmembrane current, assumed traveling along the axis of the muscle
fiber, produces an electrical field within the volume conductor. Depending on the
selected recording electrode, the electrical field contributes to the resulting AP in a
certain way as described by the so-called weighting function.

This type of model is denoted as a line source model because it is formulated
as a convolution between the transmembrane current and the weighting function.
As shown in this thesis, a finite fiber length may be accomodated already in the
continuous-time model by a simple adjustment of the weighting function. This has
not been addressed in the literature before and is an important improvement to the
efficiency of the simulations.

Another novelty introduced in this thesis is to apply an anti-aliasing filter to the
continuous-time model prior to discretization. This reduces the aliasing errors and
allows the use of a lower discretization frequency. This is an important contribution
to the improvement of the efficiency of simulation models.

In addition to the above, there are some aspects and shortcomings worth men-
tioning. The assumption of an infinite volume conductor is of course questionable
but, unless the muscle fiber is located close to the volume conductor’s periphery,
the error is negligible [39].

The validity of the intracellular potential model used here is uncertain. It is
based on a single work [70] and its accuracy is not fully known. Several variants
of this potential have been used, e.g., [62] and [39], suggesting there are some
imperfections. This is an issue that would benefit from a further study.

No anti-aliasing filter was applied to the weighting function prior to its dis-
cretization due to the lack of the required transfer function formulation. This place
a lower limit on the admissible discretization frequencies. Certainly, the weight-
ing function could first be discretized using a high frequency, anti-aliasing filtered,
and re-discretized at the desired frequency. The practical advantage of such a pro-
cedure is probably limited. The most significant advantage of a transfer function
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formulation of the weighting function is that, combined with the transfer function
formulation of the transmembrane current, the APs may be generated in the fre-
quency domain directly. Therefore, the transformation from the time domain to the
frequency domain may be omitted.

The weighting functions of the electrodes were derived by averaging the elec-
tric field over the recording surface. The mere presence of the electrode, however,
alters the electric field which is manifested as a wall effect [27] in recordings with a
single fiber positioned close to a muscle fiber and as a shadow effect in recordings
from a fiber situated “behind” the cannula [88].

Neither of these effects were incorporated in the model due to the lack of para-
metric descriptions of the corresponding weighting functions. In the general case,
however, these effects have no important contribution to the resulting AP. The
model validation aspects is further discussed below.

In Chapter 7 a simple model of a motor unit (MU) is presented. Based on the
correspondance between the mean fiber concentration (MFC) on one hand and the
continuum of myopathic-normal-neurogenic muscles on the other, the MFC value
alone was used to control the generation of normal, myopathic, and neurogenic
MUs. Albeit this is a principally correct model that has support in earlier studies
[84], it disregards many of the important processes known to take place in neuro-
muscular diseases. The approximation was needed, however, in order to make the
simulations in Chapter 8 manageable.

An important issue is the general validity of the model (assuming an appropri-
ate simulation of the MU, see [83]). Performing a proper model validation would
be difficult. All available experience, however, indicate that the accuracy is good
enough for most situations. Compared to the variability encountered in live record-
ings, these errors are in general negligible.

The perhaps most important advantage with this model is that it is computa-
tionally fast and well suited for simulations of large number of fibers (even entire
muscles as shown in [83] and [84]). Such simulations may contribute to a deeper
understanding of the correspondance between the EMG signal and the different
neuromuscular disorders.

10.2 Prefiltering and parameter assessment

Chapter 8 explores the possibility of applying a prefilter to EMG signals obtained
with the concentric needle electrode in order to simplify the succeeding parameter
assessment. The assessed parameters are intended to be used for diagnosis.

It was assumed that the EMG signal is properly recorded and that its constituent
motor unit action potentials (MUAPs) are identified and extracted. This makes it
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possible to separately analyze the individual MUAPs originating from the same
MU.

The assessment was focused on the MFC and the jitter, because these param-
eters discriminate a vast number of diseases. To simplify their assessment, the
MUAP was prefiltered in different ways.

Estimating the MFC is basically an estimation of the number of fibers resid-
ing within a certain area. The number of fibers is reflected in the MUAP by the
amplitude, the area, or the number of peaks.

The original MUAP is not very suitable for this analysis due to the constituent
APs having both positive and negative phases. If a positive phase coincides with a
negative phase, cancellation occurs where the total amplitude is decreased.

By designing the prefilter appropriately, the originally multiphasic APs may be
transformed to a strictly positive signal with a single maximum, referred to as a
monophasic signal.

Applying this prefilter to the MUAP causes all APs to add constructively, with
no cancellation. For the amplitude, the prefiltering clearly provided an improve-
ment of the MFC estimation whereas for the area, the difference was minimal.

The results suggest that the area is the preferred method when assessing the
MFC. In clinical routine, however, the amplitude measure may still be preferred
because it is sensitive to changes in the time dispersion of the APs. (This aspect
has not been discussed in the thesis.) Prefiltering of the MUAP may therefore be
advantageous. Further studies will analyze this issue in more detail.

To count the individual fibers, the prefiltered APs must be narrow in order
to be discernable. A second filter was designed that transformed the recorded
APs into narrow impulses (also monophasic). By applying this second prefilter
to the MUAP, the APs are manifested as narrow impulses in the filter output.
The performance of this method was good for MFC values below normal (MFC
< 5 fibers/mm2) but saturated for higher fiber concentrations.

A practical and efficient way of designing the prefilters is to use Wiener filter
design methods, c. f. Chapter 5. This framework provides a good intuitive cou-
pling between the design variables and the properties of the resulting filter, which
simplifies the tuning process.

The second prefilter may also be used in jitter estimations because it often
resolves the individual peaks. In addition to merely detect the peak, it must then
also be localized very accurately (within a few microseconds). By fitting a second
order polynomial to the found peak, a refined localization is possible to achieve.

In contrast to the fiber counting algorithm, however, this localization procedure
is quite sensitive to noise. It works well on, e.g., single fiber APs where the signal-
to-noise ratio is large but yields poor estimates on the noisy output from the second
prefilter.
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To alleviate this effect, the bandwidth of the prefilter was reduced to 50%.
The drawback of this is that the width of the impulses increases which impair
the resolution capacity. In future work the noise requirements will be addressed
already at the outset of the filter design.

The width of the constituent components has another, more subtle, importance
whether they are the prefiltered APs or the original ones. If two components are
closely spaced in time, the peaks in the summation signal are in general closer to
each other than the individual peaks of the two components. We refer to this as
peak displacement and it may cause an erroneous jitter estimate.

As was shown in the chapter, the narrow impulses produced by the second,
adjusted prefilter is a benefit in this regard. Using the APs obtained with the sin-
gle fiber electrode, the jitter estimates were slightly biased (±2 µs). Using the
prefiltered MUAPs, the bias was comparable for APs spaced less than 300 µs and
practically zero for larger separations. Further studies will be made to investigate
the validity and implications of this result.

Once the AP components are detected and localized, the jitter may be estimated
from the localization data. In the general case, where the absolute timing of the
APs is unknown, the relative jitter is measured by studying the variability in the
inter-peak intervals (IPIs).

Unless only one pair of the APs are detected in each discharge, the detected
APs must be classified in order to assure that the IPIs are calculated on the same
pairs. As a “proof of concept,” a test was done using the MHT/Kalman tracking
algorithm, c. f. Chapter 3 and Chapter 4, which correctly classified the APs in a
MUAP with four detectable APs.

An interesting possibility with this tracking algorithm is that an automatic ex-
clusion of unresolvable APs may be built-in. This is a challenging issue for future
work.

Most importantly, the proposed methods must be tested on both properly mod-
eled abnormal muscles as well as on real signals. We anticipate that the prefilters
will then need to be adjusted due to differences between the model and real mus-
cle. What impact this has on the performance remains to be seen, but a performance
similar to what is shown in the thesis is reasonable.

10.3 Data detection and classification

In Chapter 9 an application that automates the detection and classification of nerve
fiber APs is described.

The data was recorded by an automatic system that exploits the marking phe-
nomenon [95] by repetitively stimulating a set of C-fibers in the foot while record-
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ing the emitted responses at the knee. The recorded APs are displayed in subse-
quent traces from top to bottom in a falling leaf display. Any additional stimulus
that triggers a C-fiber is manifested by an increased latency.

The APs were detected asynchronously by a matched filter (MF), c. f. Chap-
ter 2, that was tuned using previously recorded data and had a constant false alarm
rate. The noise was assumed to be white and its variance was estimated prior to the
analysis of each trace. The performance of this detector was adequate in the sense
that it was not a limiting factor in the overall performance.

The detected APs were classified using the MHT/Kalman tracking algorithm,
c. f. Chapter 3 and Chapter 4, where the differences in latency was used to dis-
criminate between APs originating from different C-fibers. To further improve the
performance, especially for crossing tracks, the latency model was augmented with
an amplitude estimate.

Tuning the tracker and finding the appropriate parameter settings is somewhat
tricky. The simulation methods presented in Chapter 2 and Chapter 3 provide some
parameters, e.g., resolution and accuracy of the MF, and the variance of the predic-
tions to mention a few. Other parameters had to be found using trial-and-error.

Once the appropriate parameter settings were found, however, there was no
immediate need for retuning. The overall performance was good and provided AP
classifications with little need for audit and correction.

The algorithm application has been in use for several years and has proven to
make the analysis of these experiments more efficient.

However, the tracking performance depends on the manual tuning of the model
parameter α. Although this parameter rarely needs to be changed, it would be
preferable to design a predictor that is robust to differences in this parameter. A
possible solution is to extend the Kalman predictor to a multiple model predictor.

10.4 Epilog

As demonstrated by the applications presented in this thesis, a signal processing ap-
proach to problems within the neurophysiological field may actually be fruitful in
spite of the competition presented by the existing, often well-designed algorithms.

With better physiological and anatomical knowledge, more sophisticated record-
ing techniques, and more powerful computers, the future of signal processing
within the neurophysiological field look bright and promising.
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[61] S. D. Nandedkar and E. V. Stålberg, “Simulation of macro EMG motor
unit potentials,” Electroenceph. Clin. Neurophysiol., vol. 56, pp. 52–62,
February 1983.
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action potential, 2
compound, 20
Hodgkin-Huxley, 5

aliasing, 17, 118
AMFD, see asynchronous MF detec-

tor
anisotropy ratio, 111
anti-aliasing filter, 118
AP, see action potential
association, 78
asynchronous MF detector, 31
axon, 2

background activity, 139
bandwidth, 37, 188
bandwidth ratio, 37
blocking, 129

C fiber, 8
canceling, 23
CCF, see cumulative cut-off frequency
cell membrane, 3
center frequency, 37, 188
CN electrode, see concentric needle

electrode
collateral sprouting, 129
concentric needle electrode, 19

conduction velocity, 6
conductivity

axial, 111
radial, 111

cumulative cut-off frequency, 117

deconvolution, 89
deconvolved signal

fully, 144
partially, 144

depolarization, 6
design model, 141
detection

matched filter, 178
detection interval, 39
disease, 20, 129

electromyogram, 16
EMG, see electromyogram
energy signal, 95
equilibrium potential, 4

fascicle, 9
fiber

muscle, 12
nerve, 2

forward shift operator, 109
Fourier
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inverse transform, 92
transform, 92

free nerve endings, 8
full deconvolution, 24

gate, 81

hypothesis, 81
residual score, 83
score, 81, 179

hypothesis limiting
clustering, 85
combining, 87
gating, 85
pruning, 86

IAC, see innovations autocorrelation
innervation, 13
innovation, 58
innovations autocorrelation, 60
intensity

false alarm, 46
inter-potential interval, 157
ion channels, 6
ion pumps, 5
IPI, see inter-potential interval

jitter, 14, 129
absolute, 157
relative, 157

junctional disease, see neuromuscu-
lar junction disease

Macro electrode, 19
marking phenomenon, 9, 171
matched filter, 34

detection, 178
linear transformation, 44
noise variance estimation, 177
tuning, 176

MCD, see mean consecutive differ-
ence

mean consecutive difference, 157
mean fiber concentration, 20
mean fiber concentration, 128
measurement variable, 154

absolute area, 155
number of peaks, 156
peak-to-peak, 154

MF, see matched filter
MFC, see mean fiber concentration,

see mean fiber concentration
MHT, see Multiple hypothesis track-

ing
minimum mean squared error, 53
MMSE, see minimum mean squared

error
modulation, 9
monophasic, 136
motoneuron, 13
motor endplate, 13
motor unit, 13
motor unit action potential, 19
MU, see motor unit
MUAP, see motor unit action poten-

tial
Multiple hypothesis tracking, 80
myelination, 7
myopathy, 20, 129

NCP, see normalized cumulative power
NEE, see Normalized estimation er-

ror
NEES, see normalized estimation er-

ror squared
Nernst equation, 4
nerve terminal, 2
neuromuscular disorders, 129
neuromuscular junction, 13
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neuromuscular junction disease, 21,
129

neuropathy, 20, 129
NIS, see normalized innovation squared
NMJ, see neuromuscular junction
nociceptors, 8
noise bandwidth, 188
noise variance estimation

matched filter, 177
normalized cumulative power, 116
Normalized estimation error, 60
normalized estimation error squared,

60
normalized innovation squared, 60
Nyquist frequency, 117

observation, 77

partial deconvolution, 23
peak displacement, 159
pick-up distance, 18
power signal, 95
prewhitening, 69
probability

detection, 40
false alarm, 40

processing delay, 90

Ranvier
nodes of, 7

receptors, 8
repolarization, 6
resolution capability, 49
robust filtering, 142

scan, 78
sensitization, 9
SF electrode, see single fiber electrode
shadow effect, 130
sidelobe rejection

global, 50

primary, 50
signal-to-noise ratio, 34, 171
single fiber electrode, 19
SMFD, see synchronous MF detector
smoothing lag, 90
SNR, see signal-to-noise ratio
synchronous MF detector, 31

target track, 77
template, 33, 176
track

confirmed, 84
deleted, 84
potential, 84
score, 83
tentative, 84
terminated, 84

tuning
matched filter, 176

wall effect, 130


