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A new kind of prior

● Ex.: Translating the English “in” into French
● p(dans) + p(en) + p(à) + p(au cours de) + 

p(pendant) = 1
● From analyzing texts, we know

– p(dans) + p(en) = 3/10
– p(dans) + p(à) = 1/2

● Cannot use principle of indifference

● Goal: Assign a probability distribution as 
uniform as possible while agreeing with 
constraints.



  

What doesn't work

● Maximizing variance
● Leads to unjustified solutions

● Minimizing sum of squares

● May end up with negative p
i

● “Fixing” them is not an option
– Different principles of reasoning for different constraint 

values
– Assigns zero probability to situations that are not ruled 

out by prior information



  

A measure of uncertainty

Requirements for a measure of uncertainty of a 
probability distribution:
(1) Measure is a real-valued function H(p

1
, ..., p

n
)

(2) Continuity: A small change in p
i
 may cause only a small 

change in uncertainty

(3) Common sense: More possibilities → more uncertainty.

Formally: h(n) ≤ h(n+1), where 

 

(4) Consistency: All ways of working out H need to yield the 
same value

h n=H 
1
n
, ... , 1

n
n times





  

Functional equations for H

● Given two alternatives with probabilities p
1
, q

● Uncertainty: H(p
1
, q)

● Second alternative really consists of two 
different alternatives with probabilities p

2
, p

3

● What's H(p
1
, p

2
, p

3
)?

H  p1 , p2 , p3=H  p1 , qqH 
p2

q
,
p3

q




  

Functional equations for H (cont.)

● Generalization

● n alternatives with probabilities p
i

● Group them into composite propositions

w1

w2

w3

w1= p1 p2 p3

w2=...

H  p1 , ... , pn=

H w1 , ... ,wrw1H 
p1

w1

, ... ,
pk
w1

w2H 
p k1

w2

, ... ,
pkm
w2

...



  

Deriving h

● Consider rational 

– Imagine p
i
 stands for a composition of n

i
 propositions with 

equal probabilities.

● Then

● If all n
i
 = m, we get 

● This is solved by 

pi=
ni
N
, N=∑ n j

p1 p2
p3

p4

h N =h ∑ n j=H  p1 , ... , pn∑ pi hni

h mn=h mh n

h n=K log n

p1=
3

13
, p2=...



  

Finally, a measure of uncertainty

● Using the functional equations and h = log(n)

● H is called information entropy
● Not to be confused with experimental entropy
● Showed only necessity
● Proof of uniqueness is in the book ;)

H  p1 , ... , pn=−∑ pi log  pi



  

Wallis derivation

● Goal: Assign probabilities p
i
 to m different 

propositions subject to constraints
● Game:

● Distribute the n  m quanta of probability randomly ≫
among the m propositions

● Check if the resulting assignment satisfies the 
constraints
– If yes: done, else: repeat game.

pi=
ni
n



  

Wallis derivation

● What's the probability of getting a specific 
assignment?
● Multinomial distribution
● Larger W  more likely result⇒

● As n → ∞: 
● Thus, the most likely assignment is the one that 

maximizes entropy

m−n⋅W ,W=
n !

n1 !⋯nm!

1
n

log W H  p1 , ... , pm



  

Maximum entropy distributions

● Let's put the measure to work

● Given propositions A
1
, ..., A

n
, variable x can take 

corresponding values x
1
, ..., x

n

● Of course, we want 
● Our prior tells us that 

– I.e., the expected values for the functions f
k
 are given

F k=〈 f k  x〉=∑ pi f k  x i

∑ pi=1



  

Maximum entropy distributions

● Using the Lagrange method, it is shown that

– λ
i
 are Lagrange multipliers

– λ
i
 are chosen so they satisfy the constrains

● Alternative derivation of p
i
 shows that it indeed 

maximizes H
– Necessary because Lagrange method doesn't work if 

maximum at a cusp

pi=exp −0−∑
j=1

m

 j f j x i



  

Objections



  

Round 1

● “'Maximum uncertainty' is a negative thing 
which can't possibly lead to any useful 
predictions.”
● This is a “play on words”
● The principle doesn't create “new” uncertainty, it 

merely tries to avoid unwarranted assumptions



  

Round 2

● “Probabilities obtained by MAXENT are 
irrelevant to physical predictions because they 
have nothing to do with frequencies.”

– “The probability distribution which maximizes the entropy 
is numerically identical with the frequency distribution 
which can be realized in the greatest number of ways.”

– “If the information incorporated into the maximum entropy 
analysis includes all the constraints actually operating in 
the random experiment, then the distribution predicted by 
maximum entropy is overwhelmingly the most likely to be 
observed experimentally.”



  

Round 3

● “The principle only works when the constraints 
are averages; in practice, they are real 
measurements, and not averages over 
anything.” [?]
● The principle also works for other constraints
● If there are constraints on the width of the 

distribution, we can incorporate them



  

Round 4

● “Different people have different information, so 
the results are basically arbitrary.”
● Consider Mr A and Mr B; Mr B has some additional 

information that Mr A hasn't
– If Mr B's additional information is implied by Mr A's 

information, they will find at the same distribution
– If Mr B's additional information is contradictory to his 

previous information, no distribution can be found
– If Mr B's additional information was neither redundant or 

contradictory, his distribution will indeed have a lower 
entropy



  

“The principle of maximum entropy is not an 
oracle telling which predictions must be right; it is 
a rule for inductive reasoning that tells us which 
predictions are most strongly indicated by our 

present information.”



  

The end.

           JAYNES
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